Skip to main content
Log in

A Finite Element Nonoverlapping Domain Decomposition Method with Lagrange Multipliers for the Dual Total Variation Minimizations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider a primal-dual domain decomposition method for total variation regularized problems appearing in mathematical image processing. The model problem is transformed into an equivalent constrained minimization problem by tearing-and-interconnecting domain decomposition. Then, the continuity constraints on the subdomain interfaces are treated by introducing Lagrange multipliers. The resulting saddle point problem is solved by the first order primal-dual algorithm. We apply the proposed method to image denoising, inpainting, and segmentation problems with either \(L^2\)-fidelity or \(L^1\)-fidelity. Numerical results show that the proposed method outperforms the existing state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bartels, S.: Total variation minimization with finite elements: convergence and iterative solution. SIAM J. Numer. Anal. 50(3), 1162–1180 (2012)

    Article  MathSciNet  Google Scholar 

  2. Chambolle, A., Levine, S.E., Lucier, B.J.: An upwind finite-difference method for total variation-based image smoothing. SIAM J. Imaging Sci. 4(1), 277–299 (2011)

    Article  MathSciNet  Google Scholar 

  3. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  4. Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numer. 25, 161–319 (2016)

    Article  MathSciNet  Google Scholar 

  5. Chan, T.F., Esedoglu, S.: Aspects of total variation regularized \({L}^1\) function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005)

    Article  MathSciNet  Google Scholar 

  6. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  Google Scholar 

  7. Chan, T.F., Wong, C.-K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7(3), 370–375 (1998)

    Article  Google Scholar 

  8. Chang, H., Tai, X.-C., Wang, L.-L., Yang, D.: Convergence rate of overlapping domain decomposition methods for the Rudin–Osher–Fatemi model based on a dual formulation. SIAM J. Imaging Sci. 8(1), 564–591 (2015)

    Article  MathSciNet  Google Scholar 

  9. Dong, Y., Hintermüller, M., Neri, M.: An efficient primal-dual method for \({L}^1 {T}{V}\) image restoration. SIAM J. Imaging Sci. 2(4), 1168–1189 (2009)

    Article  MathSciNet  Google Scholar 

  10. Duan, Y., Chang, H., Tai, X.-C.: Convergent non-overlapping domain decomposition methods for variational image segmentation. J. Sci. Comput. 69(2), 532–555 (2016)

    Article  MathSciNet  Google Scholar 

  11. Farhat, C., Roux, F.-X.: A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Methods Eng. 32(6), 1205–1227 (1991)

    Article  MathSciNet  Google Scholar 

  12. Fornasier, M.: Domain decomposition methods for linear inverse problems with sparsity constraints. Inverse Probl. 23(6), 2505–2526 (2007)

    Article  MathSciNet  Google Scholar 

  13. Fornasier, M., Langer, A., Schönlieb, C.-B.: A convergent overlapping domain decomposition method for total variation minimization. Numer. Math. 116(4), 645–685 (2010)

    Article  MathSciNet  Google Scholar 

  14. Fornasier, M., Schönlieb, C.-B.: Subspace correction methods for total variation and \(l1\)-minimization. SIAM J. Numer. Anal. 47(5), 3397–3428 (2009)

    Article  MathSciNet  Google Scholar 

  15. Hermann, M., Herzog, R., Schmidt, S., Vidal-Núñez, J., Wachsmuth, G.: Discrete total variation with finite elements and applications to imaging. J. Math. Imaging Vis. 61(4), 411–431 (2019)

    Article  MathSciNet  Google Scholar 

  16. Hintermüller, M., Langer, A.: Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed \({L}^1\)/\({L}^2\) data-fidelity in image processing. SIAM J. Imaging Sci. 6(4), 2134–2173 (2013)

    Article  MathSciNet  Google Scholar 

  17. Hintermüller, M., Langer, A.: Non-overlapping domain decomposition methods for dual total variation based image denoising. J. Sci. Comput. 62(2), 456–481 (2015)

    Article  MathSciNet  Google Scholar 

  18. Lee, C.-O., Lee, J.H., Woo, H., Yun, S.: Block decomposition methods for total variation by primal-dual stitching. J. Sci. Comput. 68(1), 273–302 (2016)

    Article  MathSciNet  Google Scholar 

  19. Lee, C.-O., Nam, C.: Primal domain decomposition methods for the total variation minimization, based on dual decomposition. SIAM J. Sci. Comput. 39(2), B403–B423 (2017)

    Article  MathSciNet  Google Scholar 

  20. Lee, C.-O., Nam, C., Park, J.: Domain decomposition methods using dual conversion for the total variation minimization with \({L}^1\) fidelity term. J. Sci. Comput. 78(2), 951–970 (2019)

    Article  MathSciNet  Google Scholar 

  21. Lee, C.-O., Park, E.-H., Park, J.: A finite element approach for the dual Rudin–Osher–Fatemi model and its nonoverlapping domain decomposition methods. SIAM J. Sci. Comput. 41(2), B205–B228 (2019)

    Article  MathSciNet  Google Scholar 

  22. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1), 99–120 (2004)

    Article  MathSciNet  Google Scholar 

  23. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (2015)

    Google Scholar 

  24. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  25. Shen, J., Chan, T.F.: Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 62(3), 1019–1043 (2002)

    Article  MathSciNet  Google Scholar 

  26. Strong, D., Chan, T.F.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl. 19(6), S165–S187 (2003)

    Article  MathSciNet  Google Scholar 

  27. Wang, J., Lucier, B.J.: Error bounds for finite-difference methods for Rudin–Osher–Fatemi image smoothing. SIAM J. Numer. Anal. 49(2), 845–868 (2011)

    Article  MathSciNet  Google Scholar 

  28. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)

    Article  MathSciNet  Google Scholar 

  29. You, Y.-L., Kaveh, M.: A regularization approach to joint blur identification and image restoration. IEEE Trans. Image Process. 5(3), 416–428 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongho Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author’s work was supported by NRF Grant funded by MSIT (NRF-2017R1A2B4011627) and the second author’s work was supported by NRF Grant funded by the Korean Government (NRF-2015-Global Ph.D. Fellowship Program)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CO., Park, J. A Finite Element Nonoverlapping Domain Decomposition Method with Lagrange Multipliers for the Dual Total Variation Minimizations. J Sci Comput 81, 2331–2355 (2019). https://doi.org/10.1007/s10915-019-01085-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01085-z

Keywords

Mathematics Subject Classification

Navigation