Advertisement

Journal of Scientific Computing

, Volume 81, Issue 3, pp 1860–1881 | Cite as

An Efficient Boundary Integral Scheme for the Threshold Dynamics Method II: Applications to Wetting Dynamics

  • Dong WangEmail author
  • Shidong Jiang
  • Xiao-Ping Wang
Article
  • 57 Downloads

Abstract

In this paper, we extend the boundary integral scheme for the threshold dynamics method to treat the case where the material interface is nonsmooth and may undergo topological changes. The scheme is then applied to study the wetting dynamics in both two and three dimensions. Numerical experiments show that the scheme is more efficient as compared with the existing method using uniform grids, making accurate simulation of wetting dynamics on a chemically patterned solid surface in three dimensions within practical reach.

Keywords

Threshold dynamics method Nonuniform FFT Heat equation Wetting 

Notes

Acknowledgements

S. Jiang was supported by the National Science Foundation under Grant DMS-1720405 and by the Flatiron Institute, a division of the Simons Foundation. The work of X.P. Wang was partially supported by the Hong Kong Research Grants Council (GRF Grants 16302715, 16324416, and 16303318). Part of the work was performed when the authors were participating in the HKUST-ICERM VI-MSS program ‘Integral Equation Methods, Fast Algorithms and Their Applications to Fluid Dynamics and Materials Science’ held in 2017.

References

  1. 1.
    Alberti, G., DeSimone, A.: Wetting of rough surfaces: a homogenization approach. Proc. R. Soc. A 451, 79–97 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bonn, D., Eggers, J., Indekeu, J., Meunier, J., Rolley, E.: Wetting and spreading. Rev. Mod. Phys. 81(2), 739 (2009)CrossRefGoogle Scholar
  3. 3.
    Bonn, D., Ross, D.: Wetting transitions. Rep. Prog. Phys. 64(9), 1085 (2001)CrossRefGoogle Scholar
  4. 4.
    Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)CrossRefGoogle Scholar
  5. 5.
    Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31(3), 688–699 (1959)CrossRefGoogle Scholar
  6. 6.
    Chen, H., Leng, H., Wang, D., Wang, X.P.: An efficient threshold dynamics method for topology optimization for fluids. arXiv preprint arXiv:1812.09437 (2018)
  7. 7.
    Chen, X., Wang, X., Xu, X.: Analysis of the Cahn–Hilliard equation with a relaxation boundary condition modeling the contact angle dynamics. Arch. Ration. Mech. Anal. 213(1), 1–24 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dutt, A., Rokhlin, V.: Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Comput. 14, 1368–1393 (1993)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dutt, A., Rokhlin, V.: Fast Fourier transforms for nonequispaced data. II. Appl. Comput. Harmon. Anal. 2, 85–100 (1995)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Erbil, H.Y.: The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: a review. Surf. Sci. Rep. 69(4), 325–365 (2014)CrossRefGoogle Scholar
  11. 11.
    Esedoglu, S., Otto, F.: Threshold dynamics for networks with arbitrary surface tensions. Commun. Pur. Appl. Math. 68(5), 808–864 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Extrand, C.W.: Model for contact angles and hysteresis on rough and ultraphobic surfaces. Langmuir 18, 7991–7999 (2002)CrossRefGoogle Scholar
  13. 13.
    Gao, M., Wang, X.P.: An efficient scheme for a phase field model for the moving contact line problem with variable density and viscosity. J. Comput. Phys. 272, 704–718 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    de Gennes, P., Brochard-Wyart, F., Quere, D.: Capillarity and Wetting Phenomena. Springer, Berlin (2003)zbMATHGoogle Scholar
  15. 15.
    Greengard, L., Lee, J.Y.: Accelerating the nonuniform fast Fourier transform. SIAM Rev. 46(3), 443–454 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Greengard, L., Lin, P.: Spectral approximation of the free-space heat kernel. Appl. Comput. Harmon. Anal. 9(1), 83–97 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jiang, S., Wang, D., Wang, X.P.: An efficient boundary integral scheme for the MBO threshold dynamics method via the NUFFT. J. Sci. Comput. 74, 474–490 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Leung, S., Zhao, H.: A grid based particle method for moving interface problems. J. Comput. Phys. 228(8), 2993–3024 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Müller, D.E.: A method for solving algebraic equations using an automatic computer. Math. Tables Aids Comput. 10, 208–215 (1956)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Osting, B., Wang, D.: A diffusion generated motion for orthogonal matrix-valued fields. Math. Comp. (2019) (accepted) Google Scholar
  21. 21.
    Quere, D.: Wetting and roughness. Annu. Rev. Mater. Res. 38, 71–99 (2008)CrossRefGoogle Scholar
  22. 22.
    Randol, B.: On the Fourier transform of the indicator function of a planar set. Trans. Am. Math. Soc. 139, 271–278 (1969)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Wang, D.: Threshold dynamics method: theories, algorithms, and applications. Ph.D. thesis, Hong Kong University of Science and Technology (2017)Google Scholar
  24. 24.
    Wang, D., Li, H., Wei, X., Wang, X.P.: An efficient iterative thresholding method for image segmentation. J. Comput. Phys. 350, 657–667 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wang, D., Osting, B.: A diffusion generated method for computing Dirichlet partitions. J. Comput. Appl. Math. 351, 302–316 (2019)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wang, D., Osting, B., Wang, X.P.: Interface dynamics for an Allen–Cahn-type equation governing a matrix-valued field. Multiscale Model. Sim. (2019) (accepted) Google Scholar
  27. 27.
    Wang, D., Wang, X.P.: The iterative convolution-thresholding method (ICTM) for image segmentation. arXiv preprint arXiv:1904.10917 (2019)
  28. 28.
    Wang, D., Wang, X.P., Xu, X.: An improved threshold dynamics method for wetting dynamics. J. Comput. Phys. 392, 291–310 (2019)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Whyman, G., Bormashenko, E., Stein, T.: The rigorous derivative of young, Cassie–Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon. Chem. Phys. Lett. 450, 355–359 (2008)CrossRefGoogle Scholar
  30. 30.
    Womble, D.E.: A front-tracking method for multiphase free boundary problems. SIAM J. Numer. Anal. 26(2), 380–396 (1989)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Xu, X., Wang, D., Wang, X.P.: An efficient threshold dynamics method for wetting on rough surfaces. J. Comput. Phys. 330, 510–528 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Xu, X., Wang, X.P.: The modified Cassie’s equation and contact angle hysteresis. Colloid Polym. Sci. 291, 299–306 (2013)CrossRefGoogle Scholar
  33. 33.
    Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)CrossRefGoogle Scholar
  34. 34.
    Zhao, H., Chan, T., Merriman, B., Osher, S.J.: A variational level set approach to multiphase motion. J. Comput. Phys. 127(1), 179–195 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Mathematical SciencesNew Jersey Institute of TechnologyNewarkUSA
  3. 3.Department of MathematicsThe Hong Kong University of Science and TechnologyKowloonChina

Personalised recommendations