Advertisement

Journal of Scientific Computing

, Volume 81, Issue 3, pp 1472–1492 | Cite as

Complementary Solutions of Nitsche’s Method

  • Isaac HarariEmail author
  • Uri Albocher
Article
  • 59 Downloads

Abstract

Embedded methods that are based on Nitsche’s approach can facilitate the task of mesh generation in many configurations. The basic workings of the method are well understood, in terms of a bound on the stabilization parameter. However, its spectral behavior has not been explored in depth. In addition to the eigenpairs which approximate the exact ones, as in the standard formulation, Nitsche’s method gives rise to mesh-dependent complementary pairs. The dependence of the eigenvalues on the Nitsche parameter is related to a boundary quotient of the eigenfunctions, explaining the manner in which stabilization engenders coercivity without degrading the accuracy of the discrete eigenpairs. The boundary quotient proves to be useful for separating the two types of solutions. The quotient space is handy for determining the number of eigenpairs and complementary pairs. The complementary solutions approximate functions in the orthogonal complement of the kinematically admissible subspace. A global result for errors in the Galerkin approximation of the eigenvalue problem that pertains to all modes of the discretization, is extended to the Nitsche formulation. Numerical studies on non-conforming aligned meshes confirm the dependence of the eigenvalues on the parameter, in line with the corresponding boundary quotients. The spectrum of a reduced system obtained by algebraic elimination is free of complementary solutions, warranting its use in the solution of boundary-value problems. The reduced system offers an incompatible discretization of eigenvalue problems that is suitable for engineering applications. Using Irons–Guyan reduction yields a spectrum that is virtually insensitive to stabilization, with high accuracy in both eigenvalues and eigenfunctions.

Keywords

Incompatible discretization Nitsche’s method Spectral behavior Eigenvalue problem 

Notes

Acknowledgements

The authors thank Adrian Lew for helpful discussions on boundary locking. This research was supported by the Israel Science Foundation (Grant No. 269/17), and by the Diane and Arthur B. Belfer Chair in Mechanics and Biomechanics.

References

  1. 1.
    Baiges, J., Codina, R., Henke, F., Shahmiri, S., Wall, W.A.: A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes. Int. J. Numer. Methods Eng. 90(5), 636–658 (2012).  https://doi.org/10.1002/nme.3339 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Gerstenberger, A., Wall, W.A.: An embedded Dirichlet formulation for 3D continua. Int. J. Numer. Methods Eng. 82(5), 537–563 (2010).  https://doi.org/10.1002/nme.2755 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Li, Z., Ito, K.: The Immersed Interface Method. Frontiers in Applied Mathematics, vol. 33. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2006)CrossRefGoogle Scholar
  4. 4.
    Schillinger, D., Rank, E.: An unfitted \(hp\)-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. Comput. Methods Appl. Mech. Eng. 200(47–48), 3358–3380 (2011).  https://doi.org/10.1016/j.cma.2011.08.002 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    de Prenter, F., Verhoosel, C.V., van Zwieten, G.J., van Brummelen, E.H.: Condition number analysis and preconditioning of the finite cell method. Comput. Methods Appl. Mech. Eng. 316, 297–327 (2017).  https://doi.org/10.1016/j.cma.2016.07.006 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Nitsche, J.: Uber ein Variationsprinzip zur Lösung von Dirichlet–Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hambg. 36(1), 9–15 (1971)CrossRefGoogle Scholar
  7. 7.
    Stenberg, R.: On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63(1–3), 139–148 (1995).  https://doi.org/10.1016/0377-0427(95)00057-7 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Barbosa, H.J.B., Hughes, T.J.R.: The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška–Brezzi condition. Comput. Methods Appl. Mech. Eng. 85(1), 109–128 (1991).  https://doi.org/10.1016/0045-7825(91)90125-P CrossRefzbMATHGoogle Scholar
  9. 9.
    Barbone, P.E., Montgomery, J.M., Ofer, O.M., Harari, I.: Scattering by a hybrid asymptotic/finite element method. Comput. Methods Appl. Mech. Eng. 164(1–2), 141–156 (1998).  https://doi.org/10.1016/S0045-7825(98)00051-6 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Harari, I., Barbone, P.E., Montgomery, J.M.: Finite element formulations for exterior problems: application to hybrid methods, non-reflecting boundary conditions, and infinite elements. Int. J. Numer. Methods Eng. 40(15), 2791–2805 (1997).  https://doi.org/10.1002/(SICI)1097-0207(19970815)40:15<2791::AID-NME191>3.0.CO;2-W MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Harari, I., Albocher, U.: Spectral investigations of Nitsche’s method. Finite Elem. Anal. Des. 145(17), 20–31 (2018).  https://doi.org/10.1016/j.finel.2018.03.005 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dolbow, J., Harari, I.: An efficient finite element method for embedded interface problems. Internat. J. Numer. Methods Eng. 78(2), 229–252 (2009).  https://doi.org/10.1002/nme.2486. (Erratum: Ibid. 88(12):1344, (2011))MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Embar, A., Dolbow, J., Harari, I.: Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int. J. Numer. Methods Eng. 83(7), 877–898 (2010).  https://doi.org/10.1002/nme.2863 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191(47–48), 5537–5552 (2002).  https://doi.org/10.1016/S0045-7825(02)00524-8 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chen, P., Ginsberg, J.H.: On the relationship between veering of eigenvalue loci and parameter sensitivity of eigenfunctions. J. Vib. Acoust. 114(2), 141–148 (1992).  https://doi.org/10.1115/1.2930242 CrossRefGoogle Scholar
  16. 16.
    Perkins, N.C., Mote, C.D.: Comments on curve veering in eigenvalue problems. J. Sound Vib. 106(3), 451–463 (1986).  https://doi.org/10.1016/0022-460X(86)90191-4 CrossRefGoogle Scholar
  17. 17.
    Lax, P.D.: Linear Algebra and Its Applications, 2nd edn. Wiley Interscience, Hoboken (2007)zbMATHGoogle Scholar
  18. 18.
    Rank, E., Reuss, M., Kollmannsberger, S., Schillinger, D., Düster, A.: Geometric modeling, isogeometric analysis and the finite cell method. Comput. Methods Appl. Mech. Eng. 249–252, 104–115 (2012).  https://doi.org/10.1016/j.cma.2012.05.022 CrossRefzbMATHGoogle Scholar
  19. 19.
    Irons, B.M.: Eigenvalue economisers in vibration problems. J. R. Aeronaut. Soc. 67, 526–528 (1963).  https://doi.org/10.1017/S0001924000062618 CrossRefGoogle Scholar
  20. 20.
    Guyan, R.: Reduction of stiffness and mass matrices. AIAA J. 3, 380–387 (1965).  https://doi.org/10.2514/3.2874 CrossRefGoogle Scholar
  21. 21.
    Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math. 62(4), 328–341 (2012).  https://doi.org/10.1016/j.apnum.2011.01.008 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Burman, E., Claus, S., Hansbo, P., Larson, M., Massing, A.: CutFEM: discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng. 104(7), 472–501 (2015).  https://doi.org/10.1002/nme.4823 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lew, A.J., Buscaglia, G.C.: A discontinuous-Galerkin-based immersed boundary method. Int. J. Numer. Methods Eng. 76(4), 427–454 (2008).  https://doi.org/10.1002/nme.2312 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall Inc, Englewood Cliffs (1973)zbMATHGoogle Scholar
  25. 25.
    Hughes, T.J.R., Evans, J.A., Reali, A.: Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Comput. Methods Appl. Mech. Eng. 272, 290–320 (2014).  https://doi.org/10.1016/j.cma.2013.11.012 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    de Prenter, F., Lehrenfeld, C., Massing, A.: A note on the stability parameter in Nitsche’s method for unfitted boundary value problems. Comput. Math. Appl. 75(12), 4322–4336 (2018).  https://doi.org/10.1016/j.camwa.2018.03.032 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Annavarapu, C., Hautefeuille, M., Dolbow, J.E.: Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods. Int. J. Numer. Methods Eng. 92(2), 206–228 (2012).  https://doi.org/10.1002/nme.4343 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
  2. 2.Afeka, Tel Aviv Academic College of EngineeringTel AvivIsrael

Personalised recommendations