Journal of Scientific Computing

, Volume 81, Issue 3, pp 1678–1711 | Cite as

A Decoupled, Linear and Unconditionally Energy Stable Scheme with Finite Element Discretizations for Magneto-Hydrodynamic Equations

  • Guo-Dong Zhang
  • XiaoMing He
  • XiaoFeng YangEmail author


In this paper, we consider numerical approximations for solving the nonlinear magnetohydrodynamical system, that couples the Navier–Stokes equations and Maxwell equations together. By combining the projection method and some subtle implicit–explicit treatments for nonlinear coupling terms, we develop a fully decoupled, linear and unconditionally energy stable scheme for solving this system, where a new auxiliary velocity field is specifically introduced in order to decouple the computations of the magnetic field from the velocity field. We further prove that the fully discrete scheme with finite element approximations is unconditional energy stable. By deriving the \(L^{\infty }\) bound of the numerical solution and the relation between the new auxiliary velocity field and the velocity field, and using negative norm technique, we obtain the optimal error estimates rigorously. Various numerical experiments are implemented to demonstrate the stability and the accuracy in simulating some benchmark problems, including the Kelvin–Helmholtz shear instability and the magnetic-frozen phenomenon in the lid-driven cavity.


Magneto-hydrodynamics Linear Decoupled Unconditional energy stability First order Error estimates 

Mathematics Subject Classification

35Q30 65M12 65M60 



G. D. Zhang was supported by National Science Foundation of China under grant numbers 11601468 and 11771375 and Shandong Province Natural Science Foundation (ZR2018MA008). X. He was partially supported by the U.S. National Science Foundation under Grant NO. DMS-1818642. X. Yang was partially supported by the U.S. National Science Foundation under Grant Nos. DMS-1720212 and DMS-1818783


  1. 1.
    Achdou, Y., Guermond, J.-L.: Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 37, 799–826 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Adler, J.H., Benson, T.R., Cyr, E.C., MacLachlan, S.P., Tuminaro, R.S.: Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics. SIAM J. Sci. Comput. 38, B1–B24 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aydın, S.H., Nesliturk, A., Tezer-Sezgin, M.: Two-level finite element method with a stabilizing subgrid for the incompressible MHD equations. Int. J. Numer. Methods Fluids 62, 188–210 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Badia, S., Planas, R., Gutiérrez-Santacreu, J.V.: Unconditionally stable operator splitting algorithms for the incompressible magnetohydrodynamics system discretized by a stabilized finite element formulation based on projections. Int. J. Numer. Methods Eng. 93, 302–328 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baty, H., Keppens, R., Comte, P.: The two-dimensional magnetohydrodynamic Kelvin–Helmholtz instability: compressibility and large-scale coalescence effects. Phys. Plasmas 10, 4661–4674 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bernardi, C., Maday, Y.: Uniform inf–sup conditions for the spectral discretization of the Stokes problem. Math. Models Methods Appl. Sci. 9, 395–414 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Choi, H., Shen, J.: Efficient splitting schemes for magneto-hydrodynamic equations. Sci. China Math. 59, 1495–1510 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Choudhury, S.R.: The initial-value problem for the Kevin–Helmholtz instability of high velocity and magnetized shear layers. Q. Appl. Math. 54, 637–662 (1996)CrossRefGoogle Scholar
  9. 9.
    Cyr, E.C., Shadid, J.N., Tuminaro, R.S., Pawlowski, R.P., Chacón, L.: A new approximate block factorization preconditioner for two-dimensional incompressible (reduced) resistive MHD. SIAM J. Sci. Comput. 35, B701–B730 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gerbeau, J.-F., Le Bris, C., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Clarendon Press, Oxford (2006)CrossRefGoogle Scholar
  11. 11.
    Girault, V., Raviart, P.: Finite Element Method for Navier–Stokes Equations: Theory and Algorithms, pp. 395–414. Springer, Berlin (1987)Google Scholar
  12. 12.
    Goedbloed, J.P., Keppens, R., Poedts, S.: Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  13. 13.
    Guermond, J.L., Quartapelle, L.: On the approximation of the unsteady Navier–Stokes equations by finite element projection methods. Numer. Math. 80, 207–238 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Guermond, J.L., Shen, J.: On the error estimates for the rotational pressure-correction projection methods. Math. Comput. 73, 1719–1737 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gunzburger, M.D., Meir, A.J., Peterson, J.S.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Math. Comput. 56, 523–563 (1991)MathSciNetCrossRefGoogle Scholar
  16. 16.
    He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35, 767–801 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jones, T.W., Gaalaas, J.B., Frank, D.R.A.: The MHD Kelvin–Helmholtz instability. ii. The roles of weak and oblique fields in planar flows. Astrophys. J. 482, 230–244 (1997)CrossRefGoogle Scholar
  18. 18.
    Layton, W., Tran, H., Trenchea, C.: Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows. Numer. Methods Partial Differ. Equ. 30, 1083–1102 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lin, F., Xu, L., Zhang, P.: Global small solutions of 2-D incompressible MHD system. J. Differ. Equ. 259, 5440–5485 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lin, F., Zhang, P.: Global small solutions to an MHD-type system: the three-dimensional case. Commun. Pure Appl. Math. 67, 531–580 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Liu, J.-G., Pego, R.: Stable discretization of magnetohydrodynamics in bounded domains. Commun. Math. Sci. 8, 235–251 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ma, Y., Hu, K., Hu, X., Xu, J.: Robust preconditioners for incompressible MHD models. J. Comput. Phys. 316, 721–746 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Moreau, R.J.: Magnetohydrodynamics. Springer, Berlin (2013)Google Scholar
  24. 24.
    Phillips, E.G., Shadid, J.N., Cyr, E.C., Elman, H.C., Pawlowski, R.P.: Block preconditioners for stable mixed nodal and edge finite element representations of incompressible resistive MHD. SIAM J. Sci. Comput. 38, B1009–B1031 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Priest, E.R., Hood, A.W.: Advances in Solar System Magnetohydrodynamics. Cambridge University Press, Cambridge (1991)Google Scholar
  26. 26.
    Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system. ESAIM Math. Model. Numer. Anal. 42, 1065–1087 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ryu, D., Jones, T.W., Frank, A.: The magnetohydrodynamic Kelvin–Helmholtz instability: a three-dimensional study of nonlinear evolution. Astrophys. J. 545, 475–493 (2000)CrossRefGoogle Scholar
  28. 28.
    Salah, N.B., Soulaimani, A., Habashi, W.G.: A finite element method for magnetohydrodynamics. Comput. Methods Appl. Mech. Eng. 190, 5867–5892 (2001)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Temam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)CrossRefGoogle Scholar
  31. 31.
    Yang, X., Zhang, G.D., He, X.: Convergence analysis of an unconditionally energy stable projection scheme for magneto-hydrodynamic equations. Appl. Numer. Math. 136, 235–256 (2019)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zhang, G.-D., He, Y.: Decoupled schemes for unsteady MHD equations II: finite element spatial discretization and numerical implementation. Comput. Math. Appl. 69, 1390–1406 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zhang, G.-D., He, Y.: Decoupled schemes for unsteady mhd equations. i. Time discretization. Numer. Methods Partial Differ. Equ. 33, 956–973 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and Information SciencesYantai UniversityYantaiPeople’s Republic of China
  2. 2.Department of Mathematics and StatisticsMissouri University of Science and TechnologyRollaUSA
  3. 3.Department of MathematicsUniversity of South CarolinaColumbiaUSA

Personalised recommendations