Advertisement

Journal of Scientific Computing

, Volume 81, Issue 3, pp 1602–1629 | Cite as

Superconvergent Recovery of Rectangular Edge Finite Element Approximation by Local Symmetry Projection

  • Chao WuEmail author
  • Yunqing Huang
  • Nianyu YiEmail author
  • Jinyun Yuan
Article
  • 51 Downloads

Abstract

A new recovery method of rectangular edge finite element approximation for Maxwell’s equations is proposed by using the local symmetry projection. The recovery method is applied to the Nédélec interpolation to obtain the superconvergence of postprocessed Nédélec interpolation. Combining with the superclose result between the Nédélec interpolation and edge finite element approximation, it is shown that the postprocessed edge finite element solution superconverges to the exact solution. Numerical examples are presented to illustrate our theoretical analysis.

Keywords

Maxwell’s equations Superconvergence Edge FEM Local symmetry projection 

Mathematics Subject Classification

65N15 65N30 65N50 

Notes

Acknowledgements

Wu’s research was supported by NSFC Project (11801165, 11626099), Hunan Provincial Education Department Project (16C0636) and Pos-doc Jr. 407848/2017-7, CNPq, Brazil and Pos-doc 88887. 136371/2017-00, CAPEs, Brazil; Huang’s research was partially supported by NSFC Project (11826212, 11971410) and Project of Scientific Research Fund of Hunan Provincial Science and Technology Department (2018WK4006); Yi’s research was partially supported by NSFC Project (11671341) and Hunan Provincial NSF Project (2019JJ20016); Yuan’s research was supported by CAPES and CNPq, Brazil.

References

  1. 1.
    Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability. Numerical Mathematics and Scientific Computation. Oxford Science Publications, Oxford (2001)zbMATHGoogle Scholar
  2. 2.
    Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, part I: grids with superconvergence. SIAM J. Numer. Anal. 41(6), 2294–2312 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, part II: general unstructured grids. SIAM J. Numer. Anal. 41(6), 2313–2332 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bramble, J.H., Schatz, A.H.: Higher order local accuracy by averaging in the finite elementmethod. Math. Comput. 31, 74–111 (1977)CrossRefGoogle Scholar
  5. 5.
    Brandts, J.H.: Superconvergence of mixed finite element semi-discretizations of two time-dependent problems. Appl. Math. 44(1), 43–53 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Carstensen, C., Bartels, A.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: low order conforming, nonconforming, and mixed FEM. Math. Comput. 71, 945–969 (2002)CrossRefGoogle Scholar
  7. 7.
    Costabel, M., Dauge, M.: Maxwell and Lamé eigenvalues on polyhedra. Math. Meth. Appl. Sci. 22, 243–258 (1999)CrossRefGoogle Scholar
  8. 8.
    Chen, C., Huang, Y.: High Accuracy Theory of Finite Element Methods. Science Press, Hunan (1995) (in Chinese)Google Scholar
  9. 9.
    Huang, Y., Li, J., Lin, Q.: Superconvergence analysis for time dependent Maxwell’s equations in metamaterials. Numer. Methods Partial Differ. Equ. 28(6), 1794–1816 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Huang, Y., Li, J., Wu, C., et al.: Superconvergence analysis for linear tetrahedral edge elements. J. Sci. Comput. 62(1), 122–145 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Huang, Y., Li, J., Wu, C.: Averaging for superconvergence: verification and application of 2D edge elements to Maxwells equations in metamaterials. Comput. Methods Appl. Mech. Eng. 255, 121–132 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Huang, Y., Li, J., Wu, C.: Superconvergence analysis of second and third order rectangular edge elements with applications to Maxwells equations. Comput. Methods Appl. Mech. Eng. 329, 195–218 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Huang, Y., Li, J., Yang, W., et al.: Superconvergence of mixed finite element approximations to 3-D Maxwell’s equations in metamaterials. J. Comput. Phys. 230(22), 8275–8289 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Huang, Y., Yi, N.: The superconvergent cluster recovery method. J. Sci. Comput. 44, 301–322 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Huang, Y., Jiang, K., Yi, N.: Some weighted averaging methods for gradient recovery. Adv. Appl. Math. Mech. 4, 131–155 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Huang, Y., Liu, H., Yi, N.: Recovery of normal derivatives from the piecewise L2 projection. J. Comput. Phys. 231, 1230–1243 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ilic, M.M., Notaros, B.M.: Higher order hierarchical curved hexahedral vector finite elements for electromagnetic modeling. IEEE Trans. Microw. Theory Tech. 51(3), 1026–1033 (2003)CrossRefGoogle Scholar
  18. 18.
    Jin, J.: The Finite Element Method in Electromagnetics. Wiley, New York (2002)zbMATHGoogle Scholar
  19. 19.
    Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Elements. Hebei University Press, Hebei (1996) (in Chinese)Google Scholar
  20. 20.
    Lin, Q., Li, J.: Superconvergence analysis for Maxwell’s equations in dispersive media. Math. Comput. 77(262), 757–771 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lin, Q., Yan, N.: Global superconvergence for Maxwells equations. Math. Comput. 69(229), 159–176 (2000)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lin, Q., Lin, J.: High accuracy approximation of mixed finite element for 2-D Maxwell’s equations. Acta Math. Sci. 23(4), 499–503 (2003)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Lin, J., Lin, Q.: Global superconvergence of the mixed finite element methods for 2D Maxwell’s equations. J. Comput. Math. 5, 637–646 (2003)zbMATHGoogle Scholar
  24. 24.
    Monk, P.: A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63(1), 243–261 (1992)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Monk, P.: Superconvergence of finite element approximations to Maxwell’s equations. Numer. Methods Partial Differ. Equ. 10(6), 793–812 (1994)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Monk, P.: Finite Element Methods for Maxwell Equations. Oxford University Press, Oxford (2003)CrossRefGoogle Scholar
  27. 27.
    Monk, P.: A simple proof of convergence for an edge element discretization of Maxwell’s equations. In: Monk, P., Carstensen, C., Funken, S., Hackbusch, W., Hoppe, R.H.W. (eds.) Computational Electromagnetics, Proceedings of the GAMM Workshop, Proceedings of the GAMM Workshop on Computational Electromagnetics, Kiel, Germany, January 26–28, 2001. Lecture Notes in Computational Science and Engineering, vol. 28, pp. 127–141. Springer, Berlin (2003)Google Scholar
  28. 28.
    Naga, A., Zhang, Z.: A posteriori error estimates based on the polynomial preserving recovery. SIAM J. Numer. Anal. 42(4), 1780–1800 (2004)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Nedelec, J.C.: Mixed finite elements in \(R^{3}\). Numer. Math. 35(3), 315–341 (1980)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wahlbin, L.B.: Superconvergence in Galerkin Finite Element Methods. Springer, Berlin (1995)CrossRefGoogle Scholar
  31. 31.
    Wang, L., Zhang, Q., Zhang, Z.: Superconvergence analysis and PPR recovery of arbitrary order edge elements for Maxwells equations. J. Sci. Comput. 78, 1–24 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Yi, N., Huang, Y., Yang, W.: Function, derivative and high-order derivatives recovery methods using the local symmetry projection. J. Sci. Comput. 74(1), 536–572 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zhu, J., Zienkiewicz, O.C.: Superconvergence recovery technique and a posteriori error estimates. Int. J. Numer. Methods Eng. 30, 1321–1339 (1990)CrossRefGoogle Scholar
  34. 34.
    Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26, 1192–1213 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and Computational ScienceHunan University of Science and TechnologyXiangtanPeople’s Republic of China
  2. 2.Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational ScienceXiangtan UniversityXiangtanPeople’s Republic of China
  3. 3.Departamento de MatemáticaUniversidade Federal do Paraná, Centro PolitécnicoCuritibaBrazil

Personalised recommendations