Advertisement

Journal of Scientific Computing

, Volume 81, Issue 2, pp 1088–1110 | Cite as

An Efficient Space–Time Method for Time Fractional Diffusion Equation

  • Jie Shen
  • Chang-Tao ShengEmail author
Article
  • 161 Downloads

Abstract

A space–time Petrov–Galerkin spectral method for time fractional diffusion equations is developed in this paper. The Petrov–Galerkin method is used to simplify the computation of stiffness matrix but leads to full non-symmetric mass matrix. However, the matrix decomposition method based on eigen-decomposition is numerically unstable for non-symmetric linear systems. A QZ decomposition is adopted instead of eigen-decomposition. The QZ decomposition has essentially the same computational complexity as the eigen-decomposition but is numerically stable. Moreover, the enriched Petrov–Galerkin method is developed to resolve the weak singularity at the initial time. We also carry out the error analysis for the proposed methods and present ample numerical results to validate the accuracy and robustness of our numerical schemes.

Keywords

Fractional derivative Spectral method QZ decomposotion Generalized Jacobi functions Error analysis 

Mathematics Subject Classification

Primary: 26A33 34A08 49M27 65N15 65N35 

Notes

References

  1. 1.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)zbMATHGoogle Scholar
  2. 2.
    Chen, F., Xu, Q., Hesthaven, J.S.: A multi-domain spectral method for time-fractional differential equations. J. Comput. Phys. 293, 157–172 (2015)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chen, H., Holland, F., Stynes, M.: An analysis of the Grünwald–Letnikov scheme for initial-value problems with weakly singular solutions. Appl. Numer. Math. 139, 52–61 (2019)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chen, S., Shen, J.: Enriched spectral methods and applications to problems with weakly singular solutions. J. Sci. Comput. 77(3), 1468–1489 (2018)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chen, S., Shen, J., Wang, L.-L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Deng, W., Li, B., Qian, Z., Wang, H.: Time discretization of a tempered fractional Feynman–Kac equation with measure data. SIAM J. Numer. Anal. 56(6), 3249–3275 (2018)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)zbMATHGoogle Scholar
  8. 8.
    Duan, B., Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Space–time Petrov–Galerkin FEM for fractional diffusion problems. Comput. Methods Appl. Math. 18(1), 1–20 (2018)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Gorenflo, R., Luchko, Y., Yamamoto, M.: Time-fractional diffusion equation in the fractional sobolev spaces. Fract. Calc. Appl. Anal. 18(3), 799–820 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Guo, B.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)zbMATHGoogle Scholar
  11. 11.
    Haidvogel, D.B., Zang, T.: The accurate solution of poisson’s equation by expansion in Chebyshev polynomials. J. Comput. Phys. 30(2), 167–180 (1979)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Hou, D., Hasan, M.T., Xu, C.: Müntz spectral methods for the time-fractional diffusion equation. Comput. Methods Appl. Math. 18(1), 43–62 (2018)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hou, D., Chuanju, X.: A fractional spectral method with applications to some singular problems. Adv. Comput. Math. 43(5), 911–944 (2017)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Huang, C., Jiao, Y., Wang, L.-L., Zhang, Z.: Optimal fractional integration preconditioning and error analysis of fractional collocation method using nodal generalized Jacobi functions. SIAM J. Numer. Anal. 54(6), 3357–3387 (2016)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84(296), 2665–2700 (2015)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of a finite element method for the space-fractional parabolic equation. SIAM J. Numer. Anal. 52(5), 2272–2294 (2014)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Jin, B., Lazarov, R., Zhou, Z.: A Petrov–Galerkin finite element method for fractional convection–diffusion equations. SIAM J. Numer. Anal. 54(1), 481–503 (2016)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38(1), A146–A170 (2016)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56(1), 1–23 (2018)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Li, B., Luo, H., Xie, X.: Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data. SIAM J. Numer. Anal. 57(2), 779–798 (2019)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Li, X., Chuanju, X.: A space–time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Lin, Y., Chuanju, X.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Liu, W., Wang, L.-L., Xiang, S.: A new spectral method using nonstandard singular basis functions for time-fractional differential equations. Commun. Appl. Math. Comput. 1, 1–24 (2019)MathSciNetGoogle Scholar
  24. 24.
    Lynch, R.E., Rice, J.R., Thomas, D.H.: Direct solution of partial difference equations by tensor product methods. Numer. Math. 6(1), 185–199 (1964)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic Press, Cambridge (1998)zbMATHGoogle Scholar
  26. 26.
    Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Shen, J., Sheng, C., Wang, Z.: Generalized Jacobi spectral-galerkin method for nonlinear Volterra integral equations with weakly singular kernels. J. Math. Study 48(4), 315–329 (2015)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Mathematics Monograph Series, vol. 3. Science Press, Beijing (2006)Google Scholar
  29. 29.
    Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications, vol. 41. Springer, Berlin (2011)zbMATHGoogle Scholar
  30. 30.
    Shen, J., Wang, L.-L.: Fourierization of the Legendre–Galerkin method and a new space–time spectral method. Appl. Numer. Math. 57(5), 710–720 (2007)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Sheng, C., Shen, J.: A space–time Petrov–Galerkin spectral method for time fractional diffusion equation. Numer. Math. Theory Methods Appl. 11, 854–876 (2018)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Sun, Z., Xiaonan, W.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Tian, W.Y., Deng, W., Yujiang, W.: Polynomial spectral collocation method for space fractional advection–diffusion equation. Numer. Methods Partial Differ. Equ. 30(2), 514–535 (2014)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: A unified Petrov–Galerkin spectral method for fractional pdes. Comput. Methods Appl. Mech. Eng. 283, 1545–1569 (2015)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Zayernouri, M., Karniadakis, G.E.: Fractional Sturm–Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), A2976–A3000 (2013)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Zeng, F., Zhang, Z., Karniadakis, G.E.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM J. Sci. Comput. 37(6), A2710–A2732 (2015)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Zeng, F., Zhang, Z., Karniadakis, G.E.: Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput. Phys. 307, 15–33 (2016)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Zhang, Y., Sun, Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230(24), 8713–8728 (2011)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Zhang, Z., Zeng, F., Karniadakis, G.E.: Optimal error estimates of spectral Petrov–Galerkin and collocation methods for initial value problems of fractional differential equations. SIAM J. Numer. Anal. 53(4), 2074–2096 (2015)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA
  2. 2.Division of Mathematical Sciences, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore

Personalised recommendations