Journal of Scientific Computing

, Volume 81, Issue 1, pp 217–251 | Cite as

A Second-Order Boundary Condition Capturing Method for Solving the Elliptic Interface Problems on Irregular Domains

  • Hyuntae Cho
  • Heejae Han
  • Byungjoon Lee
  • Youngsoo Ha
  • Myungjoo KangEmail author


A second-order boundary condition capturing method is presented for the elliptic interface problem with jump conditions in the solution and its normal derivative. The proposed method is an extension of the work in Liu et al. (J Comput Phys 160(1):151–178, 2000) to a higher order. The motivation of proposed method is that the approximated value at the interface can be reconstructed by proper interpolation based on the level set representation from Gibou et al. (J Comput Phys 176(1):205–227, 2002). A second-order accurate method is constructed, both in the solution and its gradient, using second-order finite difference approximation. Several numerical results demonstrate that the proposed method is indeed second-order accurate in the solution and its gradient in the \(L^{2}\) and \(L^{\infty }\) norms.


Elliptic interface problems Irregular domains Ghost fluid method Level-set method Finite difference method 



The research of Byungjoon Lee was supported by NRF Grant 2017R1C1B1008626 and POSCO Science Fellowship of POSCO TJ Park Foundation. The research of Myungjoo Kang was supported by the National Research Foundation of Korea (NRF)(2015R1A15A1009350, 2017R1A2A1A17069644).


  1. 1.
    Chen, X., Feng, X., Li, Z.: A direct method for accurate solution and gradient computations for elliptic interface problems. Numer. Algorithms 80(3), 709–740 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Chern, I.L., Shu, Y.C.: A coupling interface method for elliptic interface problems. J. Comput. Phys. 225(2), 2138–2174 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Coco, A., Russo, G.: Second order finite-difference ghost-point multigrid methods for elliptic problems with discontinuous coefficients on an arbitrary interface. J. Comput. Phys. 361, 299–330 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Gibou, F., Fedkiw, R.P., Cheng, L.T., Kang, M.: A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176(1), 205–227 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Guittet, A., Lepilliez, M., Tanguy, S., Gibou, F.: Solving elliptic problems with discontinuities on irregular domains-the Voronoi interface method. J. Comput. Phys. 298, 747–765 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Lee, L., LeVeque, R.J.: An immersed interface method for incompressible Navier–Stokes equations. SIAM J. Sci. Comput. 25(3), 832–856 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Leveque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31(4), 1019–1044 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    LeVeque, R.J., Li, Z.: Immersed interface methods for Stokes flow with elastic boundaries or surface tension. SIAM J. Sci. Comput. 18(3), 709–735 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Li, Z.: A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. Anal. 35(1), 230–254 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Li, Z., Lai, M.C.: The immersed interface method for the Navier–Stokes equations with singular forces. J. Comput. Phys. 171(2), 822–842 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Li, Z., Ji, H., Chen, X.: Accurate solution and gradient computation for elliptic interface problems with variable coefficients. SIAM J. Numer. Anal. 55(2), 570–597 (2017). MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Linnick, M.N., Fasel, H.F.: A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains. J. Comput. Phys. 204(1), 157–192 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Liu, X.D., Fedkiw, R.P., Kang, M.: A boundary condition capturing method for Poisson’s equation on irregular domains. J. Comput. Phys. 160(1), 151–178 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Marques, A.N., Nave, J.C., Rosales, R.R.: A correction function method for Poisson problems with interface jump conditions. J. Comput. Phys. 230(20), 7567–7597 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Marques, A.N., Nave, J.C., Rosales, R.R.: High order solution of Poisson problems with piecewise constant coefficients and interface jumps. J. Comput. Phys. 335, 497–515 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, vol. 82. SIAM, Philadelphia (2003)zbMATHCrossRefGoogle Scholar
  18. 18.
    Seo, J., Ha, Sy, Min, C.: Convergence analysis in the maximum norm of the numerical gradient of the Shortley–Weller method. J. Sci. Comput. 74(2), 631–639 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Shortley, G.H., Weller, R.: The numerical solution of Laplace’s equation. J. Appl. Phys. 9(5), 334–348 (1938)zbMATHCrossRefGoogle Scholar
  20. 20.
    Wiegmann, A., Bube, K.P.: The explicit-jump immersed interface method: finite difference methods for PDEs with piecewise smooth solutions. SIAM J. Numer. Anal. 37(3), 827–862 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Yoon, G., Min, C.: A review of the supra-convergences of Shortley–Weller method for Poisson equation. J. KSIAM 18(1), 51–60 (2014)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Yoon, G., Min, C.: Analyses on the finite difference method by Gibou et al. for Poisson equation. J. Comput. Phys. 280, 184–194 (2015)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hyuntae Cho
    • 1
  • Heejae Han
    • 1
  • Byungjoon Lee
    • 2
  • Youngsoo Ha
    • 1
  • Myungjoo Kang
    • 1
    Email author
  1. 1.Department of Mathematical SciencesSeoul National UniversitySeoulKorea
  2. 2.Department of MathematicsThe Catholic University of KoreaBucheonKorea

Personalised recommendations