Journal of Scientific Computing

, Volume 81, Issue 3, pp 1181–1209 | Cite as

Compact High Order Accurate Schemes for the Three Dimensional Wave Equation

  • F. Smith
  • S. TsynkovEmail author
  • E. Turkel


We construct a family of compact fourth order accurate finite difference schemes for the three dimensional scalar wave (d’Alembert) equation with constant or variable propagation speed. High order accuracy is of key importance for the numerical simulation of waves as it reduces the dispersion error (i.e., the pollution effect). The schemes that we propose are built on a stencil that has only three nodes in any coordinate direction or in time, which eliminates the need for auxiliary initial or boundary conditions. These schemes are implicit in time and conditionally stable. A particular scheme with the maximum Courant number can be chosen within the proposed class. The inversion at the upper time level is done by FFT for constant coefficients and multigrid for variable coefficients, which keeps the overall complexity of time marching comparable to that of a typical explicit scheme.


Unsteady wave propagation Fourth order accurate approximation Small stencil Cartesian grid Implicit scheme Multigrid methods 

Mathematics Subject Classification

65M06 65M12 65M22 



  1. 1.
    Abide, S., Binous, M.S., Zeghmati, B.: An efficient parallel high-order compact scheme for the 3D incompressible Navier–Stokes equations. Int. J. Comput. Fluid Dyn. 31(4–5), 214–229 (2017). MathSciNetCrossRefGoogle Scholar
  2. 2.
    Babuška, I.M., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM Rev. 42(3), 451–484 (electronic) (2000). Reprint of SIAM J. Numer. Anal. 34 (1997), no. 6, 2392–2423 [MR1480387 (99b:65135)]Google Scholar
  3. 3.
    Bayliss, A., Goldstein, C.I., Turkel, E.: On accuracy conditions for the numerical computation of waves. J. Comput. Phys. 59(3), 396–404 (1985)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bérenger, J.P.: Perfectly Matched Layer (PML) for Computational Electromagnetics. Synthesis Lectures on Computational Electromagnetics. Morgan and Claypool Publishers, San Rafael, CA (2007)Google Scholar
  5. 5.
    Brandt, A.: Rigorous quantitative analysis of multigrid. I. Constant coefficients two-level cycle with \(L_2\)-norm. SIAM J. Numer. Anal. 31(6), 1695–1730 (1994). MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000)CrossRefGoogle Scholar
  7. 7.
    Britt, S., Tsynkov, S., Turkel, E.: A compact fourth order scheme for the Helmholtz equation in polar coordinates. J. Sci. Comput. 45(1–3), 26–47 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Britt, S., Tsynkov, S., Turkel, E.: Numerical simulation of time-harmonic waves in inhomogeneous media using compact high order schemes. Commun. Comput. Phys. 9(3), 520–541 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Britt, S., Tsynkov, S., Turkel, E.: A high order compact time/space finite difference scheme for the wave equation with variable speed of sound. J. Sci. Comput. 76, 777–811 (2018). MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Britt, S., Tsynkov, S., Turkel, E.: Numerical solution of the wave equation with variable wave speed on nonconforming domains by high-order difference potentials. J. Comput. Phys. 354, 26–42 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chabassier, J., Imperiale, S.: Introduction and study of fourth order theta schemes for linear wave equations. J. Comput. Appl. Math. 245, 194–212 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Deraemaeker, A., Babuška, I.M., Bouillard, P.: Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions. Int. J. Numer. Methods Eng. 46, 471–499 (1999)CrossRefGoogle Scholar
  13. 13.
    Fishelov, D.: A new fourth-order compact scheme for the Navier–Stokes equations in irregular domains. Comput. Math. Appl. 74(1), 6–25 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fu, Y.: Compact fourth-order finite difference schemes for Helmholtz equation with high wave numbers. J. Comput. Math. 26(1), 98–111 (2008)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Grote, M.J., Sim, I.: Efficient PML for the wave equation (2010). arXiv:1001.0319
  16. 16.
    Harari, I., Turkel, E.: Accurate finite difference methods for time-harmonic wave propagation. J. Comput. Phys. 119(2), 252–270 (1995)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hocking, L.R., Greif, C.: Closed-form multigrid smoothing factors for lexicographic Gauss–Seidel. IMA J. Numer. Anal. 32(3), 795–812 (2012). MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Liang, H., Liu, M.Z., Lv, W.: Stability of \(\theta \)-schemes in the numerical solution of a partial differential equation with piecewise continuous arguments. Appl. Math. Lett. 23(2), 198–206 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lončarić, J., Tsynkov, S.V.: Optimization of acoustic source strength in the problems of active noise control. SIAM J. Appl. Math. 63(4), 1141–1183 (2003)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ma, Y., Yu, J., Wang, Y.: An efficient complex-frequency shifted-perfectly matched layer for second-order acoustic wave equation. Int. J. Numer. Methods Eng. 97(2), 130–148 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ma, Y., Yu, J., Wang, Y.: A novel unsplit perfectly matched layer for the second-order acoustic wave equation. Ultrasonics 54(6), 1568–1574 (2014). CrossRefGoogle Scholar
  22. 22.
    Petropavlovsky, S., Tsynkov, S., Turkel, E.: A method of boundary equations for unsteady hyperbolic problems in 3D. J. Comput. Phys. 365, 294–323 (2018). MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ryaben’kii, V.S.: Method of Difference Potentials and Its Applications, Springer Series in Computational Mathematics, vol. 30. Springer, Berlin (2002)CrossRefGoogle Scholar
  24. 24.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003). CrossRefzbMATHGoogle Scholar
  25. 25.
    Singer, I., Turkel, E.: High-order finite difference methods for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 163(1–4), 343–358 (1998)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Singer, I., Turkel, E.: High-order finite difference methods for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 163(1–4), 343–358 (1998). MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press Inc., San Diego (2001). With contributions by A. Brandt, P. Oswald and K. StübenzbMATHGoogle Scholar
  28. 28.
    Turkel, E., Gordon, D., Gordon, R., Tsynkov, S.: Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number. J. Comput. Phys. 232(1), 272–287 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zhou, L., Armfield, S.: A compact fourth-order spatial discretisation applied to the Navier–Stokes equations. ANZIAM Journal 56, 481–501 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsNorth Carolina State UniversityRaleighUSA
  2. 2.School of Mathematical SciencesTel Aviv UniversityRamat Aviv, Tel AvivIsrael

Personalised recommendations