Advertisement

Strong Stability Preserving Properties of Composition Runge–Kutta Schemes

  • I. Higueras
  • T. RoldánEmail author
Article
  • 10 Downloads

Abstract

In this paper strong stability preserving (SSP) properties of Runge–Kutta methods obtained by composing k different schemes with different step sizes are studied. The SSP coefficient of the composition method is obtained and an upper bound on this coefficient is given. Some examples are shown. In particular, it is proven that the optimal \(n^2\)-stage third order explicit Runge–Kutta methods obtained by Ketcheson (SIAM J Sci Comput 30(4):2113–2136, 2008) are composition of first order SSP schemes.

Keywords

Initial value problem Runge–Kutta Composition method Strong stability preserving SSP Monotonicity Radius of absolute monotonicity 

Mathematics Subject Classification

65L05 65L06 65L20 65M20 

Notes

References

  1. 1.
    Calvo, M.P., Sanz-Serna, J.M.: Numerical Hamiltonian Problems. Chapman & Hall, London (1994)zbMATHGoogle Scholar
  2. 2.
    Cavaglieri, D., Bewley, T.: Low-storage implicit/explicit Runge–Kutta schemes for the simulation of stiff high-dimensional ODE systems. J. Comput. Phys. 286, 172–193 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42(3), 1073–1093 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu–Osher representation of Runge–Kutta methods. Math. Comput. 74, 201–219 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58(11), 1675–1686 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gottlieb, S., Ketcheson, D.I., Shu, C.W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38(3), 251–289 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gottlieb, S., Ketcheson, D.I., Shu, C.W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67(221), 73–85 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  11. 11.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems, 2 Revised edn. Springer, Berlin (1993)zbMATHGoogle Scholar
  12. 12.
    Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21(2), 193–223 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43(3), 924–948 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Higueras, I.: Strong stability for additive Runge–Kutta methods. SIAM J. Numer. Anal. 44(4), 1735–1758 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hundsdorfer, W., Spijker, M.N.: Boundedness and strong stability of Runge–Kutta methods. Math. Comput. 80, 863–886 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Iserles, A.: Composite exponential approximations. Math. Comput. 38(157), 99–112 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Iserles, A.: Composite methods for numerical solution of stiff systems of ODE’s. SIAM J. Numer. Anal. 21(2), 340–351 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ketcheson, D.I.: Highly efficient strong stability preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ketcheson, D.I.: Runge–Kutta methods with minimum storage implementations. J. Comput. Phys. 229(5), 1763–1773 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 59(2), 373–392 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ketcheson, D.I., Parsani, M., Ahmadia, A.J.: RK-Opt: software for the design of Runge–Kutta methods, version 0.2 (2013). http://numerics.kaust.edu.sa/RK-opt
  22. 22.
    Kraaijevanger, J.F.B.M.: Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems. Numer. Math. 48(3), 303–322 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kraaijevanger, J.F.B.M.: Contractivity of Runge–Kutta methods. BIT 31(3), 482–528 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Pandal, A., Pastor, J.M., García-Oliver, J.M., Baldwin, E., Schmidt, D.P.: A consistent, scalable model for Eulerian spray modeling. Int. J. Multiph. Flow 83, 162–171 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math. Comput. 75(253), 183–208 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ruuth, S.J., Spiteri, R.J.: High-order strong-stability-preserving Runge–Kutta methods with downwind-biased spatial discretizations. SIAM J. Numer. Anal. 42, 974 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Shu, C.W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Comput. 9(6), 1073–1084 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Spijker, M.N.: Contractivity in the numerical solution of initial value problems. Numer. Math. 42(3), 271–290 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Spijker, M.N.: Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems. Math. Comput. 45(172), 377–392 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45(3), 1226–1245 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong stability preserving time discretization methods. SIAM J. Numer. Anal. 40(2), 469–491 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Spiteri, R.J., Ruuth, S.J.: Non-linear evolution using optimal fourth-order strong-stability-preserving Runge–Kutta methods. Math. Comput. Simul. 62(1–2), 125–135 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    van de Griend, J.A., Kraaijevanger, J.F.B.M.: Absolute monotonicity of rational functions occurring in the numerical solution of initial value problems. Numer. Math. 49, 413–424 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Estadística, Informática y MatemáticasUniversidad Pública de NavarraPamplonaSpain

Personalised recommendations