# A Meshless Finite Difference Method Based on Polynomial Interpolation

• X. W. Huang
• C. S. Wu
Article

## Abstract

The finite difference (FD) formula plays an important role in the meshless methods for the numerical solution of partial differential equations. It can be created by polynomial interpolation, however, this idea has not been widely used due to the complexity of multivariate polynomial interpolation. Instead, radial basis functions interpolation is widely used to generate the FD formula. In this paper, we first propose a simple and practicable node distribution, which makes it convenient for one to choose the interpolation node set that guarantee the unique solvability of multivariate polynomial interpolation. The greatest advantage of the interpolation node set is that we can only face triangular matrix in order to obtain the Lagrange basis polynomials by the constructed basis polynomials. We then use Taylor’s formula to establish error estimates of the FD formula based on polynomial interpolation. We finally give some numerical experiments for the numerical solutions of the Poisson equation and the heat equation.

## Keywords

Finite difference Meshless methods Multivariate polynomial interpolation

## Mathematics Subject Classification

65D25 41A10 41A63 65N06

## References

1. 1.
Barnett, G.A.: A robust RBF-FD formulation based on polyharmonic splines and polynomials. Ph.D. Thesis, the Department of Applied Mathematics at the University of Colorado, Boulder (2015)Google Scholar
2. 2.
Bayona, V., Fornberg, B., Flyer, N., Barnett, G.A.: On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs. J. Comput. Phys. 332, 257–273 (2017)
3. 3.
Bayona, V., Moscoso, M., Carretero, M., Kindelan, M.: RBF-FD formulas and convergence properties. J. Comput. Phys. 229(22), 8281–8295 (2010)
4. 4.
Cao, Y., Dong, J.L., Yao, L.Q.: A modification of the moving least-squares approximation in the element-free Galerkin method. J. Appl. Math. 2014(2), 1–13 (2014)
5. 5.
Davydov, O., Dang, T.O.: On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation. Comput. Math. Appl. 62(5), 2143–2161 (2011)
6. 6.
Fasshauer, G.E., Mccourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34(2), 737–762 (2012)
7. 7.
Flyer, N., Barnett, G.A., Wicker, L.J.: Enhancing finite differences with radial basis functions: experiments on the Navier–Stokes equations. J. Comput. Phys. 316, 39–62 (2016)
8. 8.
Flyer, N., Fornberg, B., Bayona, V., Barnett, G.A.: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys. 321, 21–38 (2016)
9. 9.
Fornberg, B., Flyer, N.: Fast generation of 2-D node distributions for mesh-free PDE discretizations. Comput. Math. Appl. 69(7), 531–544 (2015)
10. 10.
Fornberg, B., Flyer, N.: Solving PDEs with radial basis functions. Acta Numer. 24, 215–258 (2015)
11. 11.
Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011)
12. 12.
Fornberg, B., Lehto, E., Powell, C.: Stable calculation of Gaussian-based RBF-FD stencils. Comput. Math. Appl. 65(4), 627–637 (2013)
13. 13.
Gasca, M., Maeztu, J.I.: On Lagrange and Hermite interpolation in $${R}^k$$. Numer. Math. 39(1), 1–14 (1982)
14. 14.
Gasca, M., Sauer, T.: Polynomial interpolation in several variables. Adv. Comput. Math. 12(4), 377–410 (2000)
15. 15.
Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comput. 37(155), 141–158 (1981)
16. 16.
Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49(1), 103–130 (2005)
17. 17.
Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput. 35(4), A2096–A2119 (2013)
18. 18.
Lemeire, F.: Bounds for condition numbers of triangular and trapezoid matrices. Bit Numer. Math. 15(1), 58–64 (1975)
19. 19.
Li, X.: Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces. Appl. Numer. Math. 99(C), 77–97 (2016)
20. 20.
Li, X., Chen, H., Wang, Y.: Error analysis in Sobolev spaces for the improved moving least-square approximation and the improved element-free Galerkin method. Appl. Math. Comput. 262, 56–78 (2015)
21. 21.
Liang, X.Z., Lü, C.M., Feng, R.Z.: Properly posed sets of nodes for multivariate Lagrange interpolation in $${C}^s$$. SIAM J. Numer. Anal. 39(2), 587–595 (2001)
22. 22.
Sauer, T., Xu, Y.: On multivariate Lagrange interpolation. Math. Comput. 64(211), 1147–1170 (1996)
23. 23.
Shadrin, A.: Error bounds for Lagrange interpolation. J. Approx. Theory 80(1), 25–49 (1995)
24. 24.
Shankar, V.: The overlapped radial basis function-finite difference (RBF-FD) method: a generalization of RBF-FD. J. Comput. Phys. 342, 211–228 (2017)
25. 25.
Shankar, V., Fogelson, A.L.: Hyperviscosity-based stabilization for radial basis function-finite difference (RBF-FD) discretizations of advection–diffusion equations. J. Comput. Phys. 372, 616–639 (2018)
26. 26.
Shu, C.: Differential Quadrature and Its Application in Engineering. Springer, London (2000)
27. 27.
Shu, C., Yao, Q., Yeo, K.S.: Block-marching in time with DQ discretization: an efficient method for time-dependent problems. Comput. Methods Appl. Mech. Eng. 191(41), 4587–4597 (2002)
28. 28.
Sroka, G.: Constants in V.A. Markov’s inequality in $${L}_p$$ norms. J. Approx. Theory 194(C), 27–34 (2015)
29. 29.
Wang, H.Y., Cui, F., Wang, X.H.: Explicit representations for local Lagrangian numerical differentiation. Acta Math. Sin. Engl. Ser. 23(2), 365–372 (2007)
30. 30.
Wang, X.H., Cui, F.: Stable Lagrangian numerical differentiation with the highest order of approximation. Sci. China Ser. A Math. 49(2), 225–232 (2006)
31. 31.
Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)
32. 32.
Whitney, H.: Functions differentiable on the boundaries of regions. Ann. Math. 35(3), 482–485 (1934)
33. 33.
Wright, G., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212(1), 99–123 (2006)