Advertisement

An HDG Method for the Time-dependent Drift–Diffusion Model of Semiconductor Devices

  • Gang Chen
  • Peter MonkEmail author
  • Yangwen Zhang
Article
  • 30 Downloads

Abstract

We propose a hybridizable discontinuous Galerkin (HDG) finite element method to approximate the solution of the time dependent drift–diffusion problem. This system involves a nonlinear convection diffusion equation for the electron concentration u coupled to a linear Poisson problem for the electric potential \(\phi \). The non-linearity in this system is the product of the \(\nabla \phi \) with u. An improper choice of a numerical scheme can reduce the convergence rate. To obtain optimal HDG error estimates for \(\phi \), u and their gradients, we utilize two different HDG schemes to discretize the nonlinear convection diffusion equation and the Poisson equation. We prove optimal order error estimates for the semidiscrete problem. We also present numerical experiments to support our theoretical results.

Keywords

Hybridizable discontinuous Galerkin method Drift–diffusion Error analysis Optimal convergence rate 

Notes

Acknowledgements

G. Chen is supported by National natural science Foundation of China (NSFC) under Grant Number 11801063 and China Postdoctoral Science Foundation under Grant Number 2018M633339. The research of P. B. Monk and Y. Zhang is partially supported by the US National Science Foundation (NSF) under Grant Number DMS-1619904.

References

  1. 1.
    Baltes, H.P., Popovic, R.S.: Integrated semiconductor magnetic field sensors. Proc. IEEE 74(8), 1107–1132 (1986)Google Scholar
  2. 2.
    Bank, R.E., Rose, D.J., Fichtner, W.: Numerical methods for semiconductor device simulation. SIAM J. Sci. Stat. Comput. 4(3), 416–435 (1983)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bessemoulin-Chatard, M., Chainais-Hillairet, C., Vignal, M.-H.: Study of a finite volume scheme for the drift-diffusion system. Asymptotic behavior in the quasi-neutral limit. SIAM J. Numer. Anal. 52(4), 1666–1691 (2014)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bessemoulin-Chatard, M.: A finite volume scheme for convection–diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme. Numer. Math. 121(4), 637–670 (2012)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Biler, P., Dolbeault, J.: Long time behavior of solutions of Nernst–Planck and Debye–Hückel drift-diffusion systems. Ann. Henri Poincaré 1(3), 461–472 (2000)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Biler, P., Hebisch, W., Nadzieja, T.: The Debye system: existence and large time behavior of solutions. Nonlinear Anal. 23(9), 1189–1209 (1994)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bin, T., Chen, M., Xie, Y., Zhang, L., Eisenberg, B., Benzhuo, L.: A parallel finite element simulator for ion transport through three-dimensional ion channel systems. J. Comput. Chem. 34(24), 2065–2078 (2013)Google Scholar
  8. 8.
    Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Brezzi, F., Marini, L.D., Pietra, P.: Two-dimensional exponential fitting and applications to drift–diffusion models. SIAM J. Numer. Anal. 26(6), 1342–1355 (1989)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Burgler, J.F., Bank, R.E., Fichtner, W., Smith, R.K.: A new discretization scheme for the semiconductor current continuity equations. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 8(5), 479–489 (1989)Google Scholar
  11. 11.
    Cesmelioglu, A., Cockburn, B., Qiu, W.: Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier–Stokes equations. Math. Comp. 86(306), 1643–1670 (2017)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Chainais-Hillairet, C., Liu, J.-G., Peng, Y.-J.: Finite volume scheme for multi-dimensional drift–diffusion equations and convergence analysis. M2AN Math. Model. Numer. Anal. 37(2), 319–338 (2003)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Chainais-Hillairet, C., Peng, Y.-J.: Convergence of a finite-volume scheme for the drift-diffusion equations in 1D. IMA J. Numer. Anal. 23(1), 81–108 (2003)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Chainais-Hillairet, C., Peng, Y.-J.: Finite volume approximation for degenerate drift–diffusion system in several space dimensions. Math. Models Methods Appl. Sci. 14(3), 461–481 (2004)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Chen, G., Cockburn, B., Singler, J.R., Zhang, Y.: Superconvergent interpolatory HDG methods for reaction diffusion equations. Part I: HDG-k methods (In preparation)Google Scholar
  16. 16.
    Chen, G., Singler, J., Zhang, Y.: An HDG method For dirichlet boundary control of convection dominated diffusion PDEs. SIAM J. Numer. AnalGoogle Scholar
  17. 17.
    Chen, H., Li, J., Qiu, W.: Robust a posteriori error estimates for HDG method for convection–diffusion equations. IMA J. Numer. Anal. 36(1), 437–462 (2016)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Chen, Y., Cockburn, B.: Analysis of variable-degree HDG methods for convection–diffusion equations. Part I: general nonconforming meshes. IMA J. Numer. Anal. 32(4), 1267–1293 (2012)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Chen, Y., Cockburn, B.: Analysis of variable-degree HDG methods for convection–diffusion equations. Part II: semimatching nonconforming meshes. Math. Comp. 83(285), 87–111 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Cockburn, B., Fu, G.: Superconvergence by \(M\)-decompositions. Part II: construction of two-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 165–186 (2017)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Cockburn, B., Fu, G.: Superconvergence by \(M\)-decompositions. Part III: construction of three-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 365–398 (2017)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Cockburn, B., Fu, G.: Devising superconvergent HDG methods with symmetric approximate stresses for linear elasticity by \(M\)-decompositions. IMA J. Numer. Anal. 38(2), 566–604 (2018)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Cockburn, B., Fu, G., Qiu, W.: A note on the devising of superconvergent HDG methods for Stokes flow by \(M\)-decompositions. IMA J. Numer. Anal. 37(2), 730–749 (2017)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Cockburn, B., Fu, G., Sayas, F.J.: Superconvergence by \(M\)-decompositions. Part I: general theory for HDG methods for diffusion. Math. Comp. 86(306), 1609–1641 (2017)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.-J.: Analysis of HDG methods for Stokes flow. Math. Comp. 80(274), 723–760 (2011)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comp. 79(271), 1351–1367 (2010)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1997)Google Scholar
  29. 29.
    De Mari, A.: An accurate numerical steady-state one-dimensional solution of the pn junction. Solid-State Electr. 11(1), 33–58 (1968)Google Scholar
  30. 30.
    Eisenberg, B., Hyon, Y., Liu, C.: Energy variational analysis of ions in water and channels: field theory for primitive models of complex ionic fluids. J. Chem. Phys. 133(10), 104104 (2010)Google Scholar
  31. 31.
    Flavell, A., Machen, M., Eisenberg, B., Kabre, J., Liu, C., Li, X.: A conservative finite difference scheme for Poisson–Nernst–Planck equations. J. Comput. Electr. 13(1), 235–249 (2014)Google Scholar
  32. 32.
    Frank, F., Knabner, P.: Convergence analysis of a BDF2/mixed finite element discretization of a Darcy–Nernst–Planck–Poisson system. ESAIM Math. Model. Numer. Anal. 51(5), 1883–1902 (2017)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Guosheng, F., Qiu, W., Zhang, W.: An analysis of HDG methods for convection–dominated diffusion problems. ESAIM Math. Model. Numer. Anal. 49(1), 225–256 (2015)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Gajewski, H.: On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors. Z. Angew. Math. Mech. 65(2), 101–108 (1985)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Gajewski, H., Gröger, K.: On the basic equations for carrier transport in semiconductors. J. Math. Anal. Appl. 113(1), 12–35 (1986)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Gao, H., He, D.: Linearized conservative finite element methods for the Nernst–Planck–Poisson equations. J. Sci. Comput. 72(3), 1269–1289 (2017)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Gao, H., Sun, P.: A linearized local conservative mixed finite element method for Poisson-Nernst-Planck equations. J. Sci. Comput. 77, 793 (2018)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Gong, W., Hu, W., Mateos, M., Singler, J.R., Zhang, Y.: An HDG method for tangential Dirichlet boundary control of stokes equations I: high regularity, Numerische MathematikGoogle Scholar
  39. 39.
    Gummel, H.K.: A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electr. Dev. 11(10), 455–465 (1964)Google Scholar
  40. 40.
    He, D., Pan, K.: An energy preserving finite difference scheme for the Poisson–Nernst–Planck system. Appl. Math. Comput. 287(288), 214–223 (2016)MathSciNetzbMATHGoogle Scholar
  41. 41.
    He, M., Sun, P.: Error analysis of mixed finite element method for Poisson–Nernst–Planck system. Numer. Methods Partial Differ. Equ. 33(6), 1924–1948 (2017)MathSciNetzbMATHGoogle Scholar
  42. 42.
    He, M., Sun, P.: Mixed finite element analysis for the Poisson–Nernst–Planck/Stokes coupling. J. Comput. Appl. Math. 341, 61–79 (2018)MathSciNetGoogle Scholar
  43. 43.
    Horng, T.-L., Lin, T.-C., Liu, C., Eisenberg, B.: Pnp equations with steric effects: a model of ion flow through channels. J. Phys. Chem. B 116(37), 11422–11441 (2012)Google Scholar
  44. 44.
    Hsieh, C.-Y., Hyon, Y.K., Lee, H., Lin, T.-C., Liu, C.: Transport of charged particles: entropy production and maximum dissipation principle. J. Math. Anal. Appl. 422(1), 309–336 (2015)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Jerome, J.W.: Consistency of semiconductor modeling: an existence/stability analysis for the stationary Van Roosbroeck system. SIAM J. Appl. Math. 45(4), 565–590 (1985)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Jerome, J.W.: Analysis of Charge Transport. A Mathematical Study of Semiconductor Devices. Springer, Berlin (1996)Google Scholar
  47. 47.
    Jerome, J.W.: Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices. Springer, Berlin (2012)Google Scholar
  48. 48.
    Lehrenfeld, C.: Hybrid Discontinuous Galerkin methods for solving incompressible flow problems, PhD Thesis (2010)Google Scholar
  49. 49.
    Li, B., Xie, X.: Analysis of a family of HDG methods for second order elliptic problems. J. Comput. Appl. Math. 307, 37–51 (2016)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Liu, H., Wang, Z.: A free energy satisfying finite difference method for Poisson–Nernst–Planck equations. J. Comput. Phys. 268, 363–376 (2014)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Liu, Y.X., Shu, C.-W.: Analysis of the local discontinuous Galerkin method for the drift–diffusion model of semiconductor devices. Sci. China Math. 59(1), 115–140 (2016)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Lu, B., Holst, M.J., McCammon, J.A., Zhou, Y.C.: Poisson–Nernst–Planck equations for simulating biomolecular diffusion–reaction processes I: finite element solutions. J. Comput. Phys. 229(19), 6979–6994 (2010)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Markowich, P.A.: The Stationary Semiconductor Device Equations. Computational Microelectronics. Springer, Vienna (1986)Google Scholar
  54. 54.
    Meng, D., Zheng, B., Lin, G., Sushko, M.L.: Numerical solution of 3D Poisson–Nernst–Planck equations coupled with classical density functional theory for modeling ion and electron transport in a confined environment. Commun. Comput. Phys. 16(5), 1298–1322 (2014)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Mirzadeh, M., Gibou, F.: A conservative discretization of the Poisson–Nernst–Planck equations on adaptive Cartesian grids. J. Comput. Phys. 274, 633–653 (2014)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Mock, M.S.: An initial value problem from semiconductor device theory. SIAM J. Math. Anal. 5, 597–612 (1974)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Oikawa, I.: A hybridized discontinuous Galerkin method with reduced stabilization. J. Sci. Comput. 65(1), 327–340 (2015)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Qiu, W., Shen, J., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses. Math. Comp. 87(309), 69–93 (2018)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Qiu, W., Shi, K.: An HDG method for convection diffusion equation. J. Sci. Comput. 66(1), 346–357 (2016)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36(4), 1943–1967 (2016)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Schmuck, M.: Analysis of the Navier–Stokes–Nernst–Planck–Poisson system. Math. Models Methods Appl. Sci. 19(6), 993–1015 (2009)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Sun, Y., Sun, P., Zheng, B., Lin, G.: Error analysis of finite element method for Poisson–Nernst–Planck equations. J. Comput. Appl. Math. 301, 28–43 (2016)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Wang, H., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection–diffusion problems. SIAM J. Numer. Anal. 53(1), 206–227 (2015)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Wu, J., Srinivasan, V., Xu, J., Wang, C.Y.: Newton–Krylov-multigrid algorithms for battery simulation. J. Electrochem. Soc. 149(10), A1342–A1348 (2002)Google Scholar
  65. 65.
    Xu, S., Chen, M., Majd, S., Yue, X., Liu, C.: Modeling and simulating asymmetrical conductance changes in gramicidin pores. Mol. Based Math. Biol. 2(1), 34–55 (2014)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of MathematicsSichuan UniversityChengduChina
  2. 2.Department of Mathematical SciencesUniversity of DelawareNewarkUSA

Personalised recommendations