Adaptive Concepts for Stochastic Partial Differential Equations

  • Andreas ProhlEmail author
  • Christian Schellnegger


An adaptive time stepping method to numerically provide approximate weak approximations of solutions of general SPDEs is proposed, where local step sizes are chosen in regard of the distance between empirical laws of subsequent time iterates and extrapolated data. The histogram-based estimator uses a data-driven partitioning of the high-dimensional state space, and efficient sampling by bootstrapping. Time adaptivity is then complemented by a local refinement/coarsening strategy of the spatial mesh of a stochastic version of the ZZ-estimator. Next to an improved accuracy, we observe a significantly reduced empirical variance of standard estimators, and therefore a reduced sampling effort. The performance of the adaptive strategies is studied for SPDEs with linear drift, including the convection-dominated case where the streamline diffusion method is adopted to attain a stable discretization, and the stochastic version of the non-linear harmonic map heat flow to the sphere \({\mathbb {S}}^{2}\) where approximate solutions exhibit discrete blow-up dynamics.


Space–time adaptivity of SPDEs Distance Probability measures Comparing distributions Partitioning of the high-dimensional state space Variance reduction 

Mathematics Subject Classification

60H15 65C05 62G07 62G09 



The authors are grateful to interesting discussions with T. Dunst and E. Teufl (U Tübingen), and M. Tretyakov (U Nottingham).


  1. 1.
    Aboura, O.: Weak error expansion of the implicit euler scheme (2013)Google Scholar
  2. 2.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, volume 140 of Pure and Applied Mathematics (Amsterdam), 2nd edn. Elsevier/Academic Press, Amsterdam (2003)Google Scholar
  3. 3.
    Baňas, L., Brzeźniak, Z., Neklyudov, M., Prohl, A.: Stochastic Ferromagnetism, volume 58 of De Gruyter Studies in Mathematics. De Gruyter, Berlin (2014). (Analysis and numerics)zbMATHGoogle Scholar
  4. 4.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, volume 15 of Texts in Applied Mathematics, 2nd edn. Springer-Verlag, New York (2002)CrossRefGoogle Scholar
  5. 5.
    Burman, E.: Consistent SUPG-method for transient transport problems: stability and convergence. Comput. Methods Appl. Mech. Eng. 199(17–20), 1114–1123 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    D’Agostino, R.B., Stephens, M.A. (eds.): Goodness-of-Fit Techniques, volume 68 of Statistics: Textbooks and Monographs. Marcel Dekker, Inc., New York (1986)Google Scholar
  7. 7.
    Dagum, L., Menon, R.: Openmp: an industry-standard api for shared-memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)CrossRefGoogle Scholar
  8. 8.
    DasGupta, A.: Asymptotic Theory of Statistics and Probability. Springer Texts in Statistics. Springer, New York (2008)Google Scholar
  9. 9.
    Davis, T.A.: Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition, volume 31 of Applications of Mathematics (New York). Springer, New York (1996)CrossRefzbMATHGoogle Scholar
  11. 11.
    Dunst, T., Prohl, A.: The Forward–backward stochastic heat equation: numerical analysis and simulation. SIAM J. Sci. Comput. 38(5), A2725–A2755 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gaines, J.G., Lyons, T.J.: Variable step size control in the numerical solution of stochastic differential equations. SIAM J. Appl. Math. 57(5), 1455–1484 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Galassi, M.: GNU Scientific Library Reference Manual. 3rd edn (2009)Google Scholar
  14. 14.
    George, A., Ng, E.: On the complexity of sparse \(QR\) and \(LU\) factorization of finite-element matrices. SIAM J. Sci. Stat. Comput. 9(5), 849–861 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gibbs, A.L., Su, F.E.: On choosing and bounding probability metrics. Int. Stat. Rev. 70(3), 419–435 (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations, volume 5 of Springer Series in Computational Mathematics. Springer, Berlin (1986). (Theory and algorithms)Google Scholar
  17. 17.
    Gobet, E., Lemor, J.-P., Warin, X.: A regression-based Monte Carlo method to solve backward stochastic differential equations. Ann. Appl. Probab. 15(3), 2172–2202 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Greenwood, P.E., Nikulin, M.S.: A Guide to Chi-Squared Testing. Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley, New York (1996). (A Wiley-Interscience Publication)Google Scholar
  19. 19.
    Hocquet, A.: Struwe-like solutions for the stochastic harmonic map flow. J. Evol. Equ. 18(3), 1189–1228 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    John, V., Novo, J.: Error analysis of the SUPG finite element discretization of evolutionary convection–diffusion–reaction equations. SIAM J. Numer. Anal. 49(3), 1149–1176 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    John, V., Schmeyer, E.: Finite element methods for time-dependent convection–diffusion–reaction equations with small diffusion. Comput. Methods Appl. Mech. Eng. 198(3–4), 475–494 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)zbMATHGoogle Scholar
  23. 23.
    Johnson, C., Nävert, U., Pitkäranta, J.: Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 45(1–3), 285–312 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lamba, H., Mattingly, J.C., Stuart, A.M.: An adaptive Euler–Maruyama scheme for SDEs: convergence and stability. IMA J. Numer. Anal. 27(3), 479–506 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Moon, K.-S., Szepessy, A., Tempone, R., Zouraris, G.E.: Convergence rates for adaptive weak approximation of stochastic differential equations. Stoch. Anal. Appl. 23(3), 511–558 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Pitman, E.J.G.: Some Basic Theory for Statistical Inference: Monographs on Applied Probability and Statistics. Chapman and Hall, London (1979)Google Scholar
  27. 27.
    Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations, volume 1905 of Lecture Notes in Mathematics. Springer, Berlin (2007)zbMATHGoogle Scholar
  28. 28.
    Schellnegger, C.: Adaptivity for Stochastic Magnetization Dynamics. Ph.D. thesis, Universität Tübingen (2018)Google Scholar
  29. 29.
    Schmidt, A., Siebert, K.G.: Design of Adaptive Finite Element Software, volume 42 of Lecture Notes in Computational Science and Engineering. Springer, Berlin (2005)Google Scholar
  30. 30.
    Szepessy, A., Tempone, R., Zouraris, G.E.: Adaptive weak approximation of stochastic differential equations. Commun. Pure Appl. Math. 54(10), 1169–1214 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    van den Berg, J.B., Williams, J.F.: (In-)stability of singular equivariant solutions to the Landau–Lifshitz–Gilbert equation. Eur. J. Appl. Math. 24(6), 921–948 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Walker, A.J.: An efficient method for generating discrete random variables with general distributions. ACM Trans. Math. Softw. 3(3), 253–256 (1977)CrossRefzbMATHGoogle Scholar
  33. 33.
    Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique. Int. J. Numer. Methods Eng. 33(7), 1331–1364 (1992)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität TübingenTübingenGermany

Personalised recommendations