Advertisement

POD-Based Mixed-Integer Optimal Control of the Heat Equation

  • Bachmann Freya
  • Beermann Dennis
  • Lu Jianjie
  • Volkwein StefanEmail author
Article
  • 5 Downloads

Abstract

In the present paper an optimal control problem governed by the heat equation is considered, where continuous as well as discrete controls are involved. To deal with the discrete controls a variant of the branch-and-bound method is utilized, where in each node a relaxed control constrained optimal control problem has to be solved involving only continuous optimization variables. However, the solutions to many relaxed optimal control problems have to be computed numerically. For that reason tailored second-order methods as well as model-order reduction are efficiently combined to speed-up the branch-and-bound method while still ensuring a desired accuracy. In this work the method of proper orthogonal decomposition (POD) is used for the model-order reduction. A posteriori error estimation in each node of the branch-and-bound method guarantees that the calculated solutions are sufficiently accurate. Numerical experiments illustrate the efficiency of the proposed strategy.

Keywords

Mixed-integer programming Optimal control PDE-constrained optimization Proper orthogonal decomposition Error analysis 

Notes

Acknowledgements

This work is supported by the BMWi-project Hybrides Planungsverfahren zur energieeffizienten Wärme- und Stromversorgung von städtischen Verteilnetzen funded by the German Ministry for Economic Affairs and Energy.

References

  1. 1.
    Bachmann, F.: A Branch-and-Bound Approach to Mixed-Integer Optimal Control Using POD. Master’s thesis, Department of Mathematics and Statistics, University of Konstanz (2017). http://nbn-resolving.de/urn:nbn:de:bsz:352-0-408645
  2. 2.
    Banholzer, S., Beermann, D.: Optimal control and model-order reduction of an abstract parabolic system containing a controlled bilinear form. Tech. rep., University of Konstanz (2016). http://nbn-resolving.de/urn:nbn:de:bsz:352-0-378706
  3. 3.
    Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Acta Numerica 22, 1–131 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Benner, P., Sachs, E., Volkwein, S.: Model order reduction for PDE constrained optimization. In: Trends in PDE Constrained Optimization, International Series of Numerical Mathematics, pp. 303–326. Birkhäuser, Basel (2014)Google Scholar
  5. 5.
    Bonami, P., Lee, J., Leyffer, S., Wächter, A.: More branch-and-bound experiments in convex nonlinear integer programming. Preprint ANL/MCS-P1949-0911, Argonne National Laboratory, Mathematics and Computer Science Division (2011)Google Scholar
  6. 6.
    Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology. Volume 5: Evolution Problems I. Springer, Berlin (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    El-Farra, N., Christofides, P.: Coordinating feedback and switching for control of spatially distributed processes. Comput. Chem. Eng. 28, 111–128 (2004)CrossRefGoogle Scholar
  8. 8.
    EPBD: On the energy performance of buildings. Official Journal of the European Union (2010). Directive 2010/31/EU of the European Parliament and of the CouncilGoogle Scholar
  9. 9.
    Evans, L.: Partial Differential Equations. American Math. Society, Providence (2008)zbMATHGoogle Scholar
  10. 10.
    Foucquier, A., Robert, S., Suard, F., Stephan, L., Jay, A.: State of the art in building modelling and energy performance prediction: a review. Renew. Sustain. Energy Rev. 23, 272–288 (2013)CrossRefGoogle Scholar
  11. 11.
    Fügenschuh, A., Geißler, B., Martin, A., Morsi, A.: The transport PDE and m+mixed-integer linear programming. In: Models and Algorithms for Optimization in Logistics, 21.06. - 26.06.2009 (2009)Google Scholar
  12. 12.
    Gerdts, M.: Optimal Control of ODEs and DAEs. De Gruyter, Berlin (2011)zbMATHGoogle Scholar
  13. 13.
    Grimm, E., Gubisch, M., Volkwein, S.: Numerical analysis of optimality-system POD for constrained optimal control. Lecture Notes in Computational Science and Engineering, vol. 105, pp. 297–317 (2015)Google Scholar
  14. 14.
    Gubisch, M., Volkwein, S.: Proper orthogonal decomposition for linear-quadratic optimal control. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model Reduction and Approximation: Theory and Algorithms, Computational Science and Engineering, vol. 17, pp. 213–234. SIAM, Philadelphia (2017)Google Scholar
  15. 15.
    Gugat, M., Leugering, G., Martin, A., Schmidt, M., Sirvent, M., Wintergerst, D.: MIP-based instantaneous control of mixed-integer PDE-constrained gas transport problems (2017)Google Scholar
  16. 16.
    Hante, F.: Relaxation methods for hyperbolic PDE mixed-integer optimal control problems. Optim. Control Appl. Methods 38, 1103–1110 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hante, F., Sager, S.: Relaxation methods for mixed-integer optimal control of partial differential equations. Comput. Optim. Appl. 55(1), 197–225 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications. Springer, New York (2009)zbMATHGoogle Scholar
  19. 19.
    Hinze, M., Volkwein, S.: Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Comput. Optim. Appl. 39, 319–345 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Holmes, P., Lumley, J., Berkooz, G., Rowley, C.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge Monographs on Mechanics, 2nd edn. Cambridge University Press, Cambridge (2012)CrossRefzbMATHGoogle Scholar
  21. 21.
    Kelley, C.: Iterative Methods for Optimization. Frontiers in Applied Mathematics. SIAM, Philadelphia (1999)CrossRefGoogle Scholar
  22. 22.
    Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 26, 497–520 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Leyffer, S., Cay, P., Kouri, D., van Bloemen Waanders, B.: Mixed-integer PDE-constrained optimization. Tech. rep., Oberwolfach Report (2015)Google Scholar
  24. 24.
    Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2006)zbMATHGoogle Scholar
  25. 25.
    Sachs, E., Volkwein, S.: POD Galerkin approximations in PDE-constrained optimization. GAMM-Mitteilungen 33, 194–208 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sager, S., Bock, H., Diehl, M.: The integer approximation error in mixed-integer optimal control. Math. Program. 133, 1–23 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Schilders, W., van der Vorst, H., Rommes, J.: Model Order Reduction: Theory, Research Aspects and Applications. The European Consortium for Mathematics in Industry. Springer (2008)Google Scholar
  28. 28.
    Singler, J.: New POD expressions, error bounds, and asymptotic results for reduced order models of parabolic PDEs. SIAM J. Numer. Anal. 52, 852–876 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Studinger, A., Volkwein, S.: Numerical analysis of POD a-posteriori error estimation for optimal control. Int. Ser. Numer. Math. 164, 137–158 (2013)zbMATHGoogle Scholar
  30. 30.
    Sunder, S., Dion, J.: Federal research and development agenda for net-zero energy, high-performance green buildings. Tech. rep., National Science and Technology Council, Committee on Technology, Subcommittee on Buildings Technology Research and Development (2008)Google Scholar
  31. 31.
    Tröltzsch, F.: Optimal Control of Partial Differential Equations, vol. 112. American Mathematical Society, Providence (2010)zbMATHGoogle Scholar
  32. 32.
    Tröltzsch, F., Volkwein, S.: POD a-posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl. 44, 83–115 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Vanderlei, R.: Linear Programming. Foundations and Extensions. International Series in Operations Research & Management Science. Springer, New York (2014)CrossRefGoogle Scholar
  34. 34.
    WBCSD: Energy E+efficiency in buildings: business realities and opportunities. Tech. rep., World Business Council for Sustainable Development (2007)Google Scholar
  35. 35.
    WBCSD: Energy efficiency in buildings: transforming the market. Tech. rep., World Business Council for Sustainable Development (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of KonstanzKonstanzGermany

Personalised recommendations