Advertisement

Filtered Hyperbolic Moment Method for the Vlasov Equation

  • Yana Di
  • Yuwei Fan
  • Zhenzhong Kou
  • Ruo Li
  • Yanli Wang
Article
  • 46 Downloads

Abstract

In this paper, we investigate the effect of the filter for the hyperbolic moment equations (HME) (Cai et al. in Commun Pure Appl Math 67(3):464–518, 2014; Cai et al. in SIAM J Sci Comput 35(6):A2807–A2831, 2013) of the Vlasov–Poisson equations and propose a novel quasi time-consistent filter to suppress the numerical recurrence effect. By taking properties of HME into consideration, the filter preserves a lot of physical properties of HME, including Galilean invariance and conservation of mass, momentum and energy. We present two viewpoints—collisional viewpoint and dissipative viewpoint—to dissect the filter, and show that the filtered hyperbolic moment method can be treated as a solver of the Vlasov equation. Numerical simulations of the linear Landau damping and two stream instability demonstrate the effectiveness of the filter in restraining recurrence arising from particle streaming. Both the analysis and the numerical results indicate that the filtered method can capture the evolution of the Vlasov equation, even when phase mixing and filamentation dominate.

Keywords

Hyperbolic moment equations Vlasov equation Filter Landau damping Two-stream instability 

Notes

Acknowledgements

This research of Y. Di is supported in part by the Natural Science Foundation of China (Grant Nos. 11771437 and 91630208). And that of Y. Wang is supported in part by the Natural Science Foundation of China No. 11501042. R. Li is supported in part by the National Natural Science Foundation of China (Grant No. 9163030002).

References

  1. 1.
    Adjerid, S., Flaherty, J.E.: A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations. SIAM J. Numer. Anal. 23(4), 778–796 (1986)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Armstrong, T.P.: Numerical studies of the nonlinear Vlasov equation. Phys. Fluids 10, 1269–1280 (1967)Google Scholar
  3. 3.
    Armstrong, T.P., Harding, R.C., Knorr, G., Montgomery, D.: Solution of Vlasov’s equation by transform methods. J. Sci. Comput. 9, 29–86 (1970)Google Scholar
  4. 4.
    Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)zbMATHGoogle Scholar
  5. 5.
    Birdsall, C.K., Langdon, A.B.: Plasma Physics Via Computer Simulation. McGraw-Hill, New York (2004)Google Scholar
  6. 6.
    Bourdiec, S.L., Vuyst, F.D., Jacquet, L.: Numerical solution of the Vlasov–Poisson system using generalized Hermite functions. Commun. Comput. Phys. 175(8), 528–544 (2006)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system. Commun. Pure Appl. Math. 67(3), 464–518 (2014)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cai, Z., Fan, Y., Li, R.: From discrete velocity model to moment method. Math. Numer. Sin. 38(3), 227–244 (2016)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Cai, Z., Fan, Y., Li, R., Lu, T., Wang, Y.: Quantum hydrodynamic model by moment closure of Wigner equation. J. Math. Phys. 53(10), 103503 (2012)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cai, Z., Li, R., Wang, Y.: Solving Vlasov equation using NR\(xx\) method. SIAM J. Sci. Comput. 35(6), A2807–A2831 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Cai, Z., Wang, Y.: Suppression of recurrence in the Hermite-spectral method for transport equations. SIAM J. Numer. Anal. 56(5), 3144–3168 (2018)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Camporeale, E., Delzanno, G.L., Bergen, B.K., Moulton, J.D.: On the velocity space discretization for the Vlasov–Poisson system: comparison between implicit Hermite spectral and particle-in-cell methods. Commun. Comput. Phys. 198, 47–58 (2016)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Canuto, C., Hussaini, M.Y., Quarteroni, A.M., Thomas Jr., A., et al.: Spectral Methods in Fluid Dynamics. Springer, Berlin (2012)zbMATHGoogle Scholar
  14. 14.
    Carrillo, J., Gamba, M., Majorana, A., Shu, C.: A WENO-solver for the transients of Boltzmann–Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods. J. Comput. Phys. 184, 498–525 (2003)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Cheng, C.Z., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–351 (1976)Google Scholar
  16. 16.
    Cheng, Y., Gamba, M., Morrison, J.: Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems. J. Sci. Comput. 56, 319–349 (2013)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Crouseilles, N., Filbet, F.: Numerical approximation of collisional plasmas by high order methods. J. Comput. Phys. 201(2), 546–572 (2004)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Di, Y., Fan, Y., Li, R.: 13-moment system with global hyperbolicity for quantum gas. J. Stat. Phy. 167(5), 1280–1302 (2017)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Di, Y., Kou, Z., Li, R.: High order moment closure for Vlasov–Maxwell equations. Front. Math. China 10(5), 1087–1100 (2015)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Eliasson, B.: Numerical simulations of the Fourier-transformed Vlasov–Maxwell system in higher dimensions theory and applications. Transp. Theory Stat. Phys. 39(5–7), 387–465 (2010)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Ellasson, B.: Outflow boundary conditions for Fourier transformed one-dimensional Vlasov–Poisson system. J. Sci. Comput. 16, 1–28 (2001)MathSciNetGoogle Scholar
  22. 22.
    Fatemi, E., Odeh, F.: Upwind finite difference solution of Boltzmann equation applied to electron transport in semiconductor devices. J. Comput. Phys. 108(2), 209–217 (1993)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Filbet, F.: Convergence of a finite volume scheme for the Vlasov–Poisson system. SIAM J. Numer. Anal. 39(4), 1146–1169 (2001)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Filbet, F., Sonnendrücker, E.: Comparison of Eulerian Vlasov solvers. Comput. Phys. Commun. 150(3), 247–266 (2003)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187 (2001)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Gottlieb, D., Hesthaven, J.S.: Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128, 83–131 (2001)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Grant, F.C., Feix, M.R.: Fourier-Hermite solutions of the Vlasov equations in the linearized limit. Phy. Fluids 10(4), 696–702 (1967)Google Scholar
  29. 29.
    Heath, R.E., Gamba, I.M., Morrison, P.J., Michler, C.: A discontinuous Galerkin method for the Vlasov–Poisson system. J. Comput. Phys. 231(4), 1140–1174 (2012)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Hesthaven, J.S., Kirby, R.: Filtering in Legendre spectral methods. Math. Comput. 77(263), 1425–1452 (2008)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Holloway, J.P.: Spectral velocity discretizations for the Vlasov–Maxwell equations. Transp. Theory Stat. 25(1), 1–32 (1996)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Hou, T., Li, R.: Computing nearly singular solutions using pseudo-spectral methods. J. Comput. Phys. 226(1), 379–397 (2007)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Joyce, G., Knorr, G., Meier, H.K.: Numerical integration methods of the Vlasov equation. J. Comput. Phys. 8(1), 53–63 (1971)zbMATHGoogle Scholar
  34. 34.
    Kanevsky, A., Carpenter, K., Hesthaven, J.S.: Idempotent filtering in spectral and spectral element methods. J. Comput. Phys. 220(1), 41–58 (2006)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Klimas, A.J.: A method for overcoming the velocity space filamentation problem in collisionless plasma model solutions. J. Comput. Phys. 68(1), 202–226 (1987)zbMATHGoogle Scholar
  36. 36.
    Klimas, A.J., Farrell, W.M.: A splitting algorithm for Vlasov simulation with filamentation filtration. J. Comput. Phys. 110(1), 150–163 (1994)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Kreiss, H.O., Oliger, J.: Stability of the Fourier method. SIAM J. Numer. Anal. 16, 421–433 (1979)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Landau, L.: On the vibrations of the electronic plasma. Eur. J. Org. Chem. 2006(2), 498–506 (1946)zbMATHGoogle Scholar
  39. 39.
    McClarren, R.G., Hauck, C.D.: Robust and accurate filtered spherical harmonics expansions for radiative transfer. J. Comput. Phys. 229(16), 5597–5614 (2010)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, Second Edition, Volume 37 of Springer tracts in natural philosophy. Springer, New York (1998)Google Scholar
  41. 41.
    Ng, C.S., Bhattacharjee, A., Skiff, F.: Complete spectrum of kinetic eigenmodes for plasma oscillations in a weakly collisional plasma. Phys. Rev. Lett. 92(6), 065002 (2004)Google Scholar
  42. 42.
    Parker, J.T., Dellar, P.J.: Fourier–Hermite spectral representation for the Vlasov–Poisson system in the weakly collisional limit. J. Plasma Phys. 81(02), 305810203 (2015)Google Scholar
  43. 43.
    Qiu, J., Shu, C.: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system. J. Comput. Phys. 230(23), 8386–8409 (2011)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Schumer, J.W., Holloway, J.P.: Vlasov simulation using velocity-scaled Hermite representations. J. Comput. Phys. 144(2), 626–661 (1998)zbMATHGoogle Scholar
  45. 45.
    Shoucri, M., Knorr, G.: Numerical integration of the Vlasov equation. J. Comput. Phys. 14(1), 84–92 (1974)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Sonnendrücker, E., Roche, J., Betrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of Vlasov equations. J. Comput. Phys 149(2), 201–220 (1998)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Torrilhon, M.: Two dimensional bulk microflow simulations based on regularized Grad’s 13-moment equations. SIAM J. Multiscale Model. Simul. 5(3), 695–728 (2006)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Vlasov, A.A.: On vibration properties of electron gas. J. Exp. Theor. Phys. 8(3), 291 (1938)Google Scholar
  49. 49.
    Zaki, S.I., Gardner, R.T., Boyd, T.J.: A finite element code for the simulation of one-dimensional Vlasov plasmas. I. Theory. J. Comput. Phys. 79, 184–199 (1988)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yana Di
    • 1
    • 2
  • Yuwei Fan
    • 3
  • Zhenzhong Kou
    • 4
  • Ruo Li
    • 5
  • Yanli Wang
    • 6
  1. 1.LSEC, NCMIS, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina
  2. 2.School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Department of MathematicsStanford UniversityStanfordUSA
  4. 4.Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina
  5. 5.CAPT, LMAM and School of Mathematical SciencesPeking UniversityBeijingChina
  6. 6.College of EngineeringPeking UniversityBeijingChina

Personalised recommendations