Advertisement

A Characteristic-Based Spectral Element Method for Moving-Domain Problems

  • Saumil Patel
  • Paul Fischer
  • Misun Min
  • Ananias Tomboulides
Article
  • 34 Downloads

Abstract

In this paper, we present a characteristic-based numerical procedure for simulating incompressible flows in domains with moving boundaries. Our approach utilizes an operator-integration-factor splitting technique to help produce an efficient and stable numerical scheme. Using the spectral element method and an arbitrary Lagrangian–Eulerian formulation, we investigate flows where the convective acceleration effects are non-negligible. Several examples, ranging from laminar to turbulent flows, are considered. Comparisons with a standard, semi-implicit time-stepping procedure illustrate the improved performance of our scheme.

Keywords

Spectral element method Arbitrary Lagrangian–Eulerian methods Operator- integration-factor splitting Characteristics Navier–Stokes equations In-cylinder engine flows 

Notes

Acknowledgements

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, under Contract DE-AC02-06CH11357. The research also used resources of the Argonne Leadership Computing Facility, which is supported by the U.S. Department iof Energy, Office of Science, under Contract DE-AC02-06CH11357.

References

  1. 1.
    Demirdžić, I., Perić, M.: Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries. Int. J. Numer. Methods Fluid. 10(7), 771 (1990)CrossRefGoogle Scholar
  2. 2.
    Tezduyar, T., Behr, M., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces-the DSD/ST procedure, I: the concept and the preliminary numerical tests. Comput. Methods Appl. Mech. Eng. 94(3), 339 (1992)CrossRefGoogle Scholar
  3. 3.
    Tezduyar, T.E., Behr, M., Mittal, S., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfacesthe deforming-spatial-domain/space-time procedure, II: computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Methods Appl. Mech. Eng. 94(3), 353 (1992)CrossRefGoogle Scholar
  4. 4.
    Donea, J., Huerta, A., Ponthot, J.P., Rodrguez-Ferran, A.: Arbitrary LagrangianEulerian methods. Encycl. Comput. Mech. 1, 14 (2004).  https://doi.org/10.1002/0470091355.ecm009 CrossRefGoogle Scholar
  5. 5.
    Arcoumanis, C., Whitelaw, J.: Fluid mechanics of internal combustion engines a review. Proc. Inst. Mech. Eng. Part C. J. Mech. Eng. Sci. 201(1), 57 (1987)CrossRefGoogle Scholar
  6. 6.
    Kuo, T.W., Yang, X., Gopalakrishnan, V., Chen, Z.: Large Eddy Simulation (les) for IC Engine Flows. Oil Gas Sci. Technol.-Rev, IFP Energies nouvelles (2012)Google Scholar
  7. 7.
    Schiffmann, P., Gupta, S., Reuss, D., Sick, V., Yang, X., Kuo, T.W.: TCC-III engine benchmark for large-eddy simulation of IC engine flows. Oil Gas Sci. Technol. 71(1), 3 (2016)CrossRefGoogle Scholar
  8. 8.
    Rutland, C.: (2011) Large-eddy simulations for internal combustion engines–a review. Int. J. Engine Res.  https://doi.org/10.11771/1468087411407248
  9. 9.
    Schmitt, M., Frouzakis, C.E., Tomboulides, A.G., Wright, Y.M., Boulouchos, K.: Direct numerical simulation of multiple cycles in a valve/piston assembly. Phys. Fluid. 26(3), 035105 (2014)CrossRefGoogle Scholar
  10. 10.
    Schmitt, M., Frouzakis, C., Wright, Y., Tomboulides, A., Boulouchos, K.: Investigation of wall heat transfer and thermal stratification under engine-relevant conditions using DNS. Int. J. Engine Res. 17(1), 63 (2016)CrossRefGoogle Scholar
  11. 11.
    Patera, A.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468 (1984)CrossRefGoogle Scholar
  12. 12.
    Ho, L.: A Legendre spectral element method for simulation of incompressible unsteady viscous free-surface flows. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (1989)Google Scholar
  13. 13.
    Ho, L., Maday, Y., Patera, A., Rønquist, E.: A high-order Lagrangian-decoupling method for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 80, 65 (1990)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ho, L., Patera, A.: A Legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows. Comput. Methods Appl. Mech. Eng. 80, 355 (1990)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fischer, P., Schmitt, M., Tomboulides, A.: Recent developments in spectral element simulations of moving-domain problems. Fields Institute Communications: Recent Progress and Modern Challenges in Applied Mathematics, Modelling and Computational Science, Springer/Fields Institute, Berlin (2016)Google Scholar
  16. 16.
    Orszag, S., Israeli, M., Deville, M.: Boundary conditions for incompressible flows. J. Sci. Comput. 1, 75 (1986)CrossRefGoogle Scholar
  17. 17.
    Maday, Y., Patera, A., Rønquist, E.: An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5, 263 (1990)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tomboulides, A., Israeli, M., Karniadakis, G.: Efficient removal of boundary-divergence errors in time-splitting methods. J. Sci. Comput. 4, 291 (1989)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Perot, J.: An analysis of the fractional step method. J. Comput. Phys. 108, 51 (1993)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Couzy, W.: Spectral element discretization of the unsteady Navier–Stokes equations and its iterative solution on parallel computers. Ph.D. thesis, Swiss Federal Institute of Technology-Lausanne (1995). Thesis nr. 1380Google Scholar
  21. 21.
    Fischer, P.: An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133, 84 (1997)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Fischer, P., Lottes, J.: In: Kornhuber, R., Hoppe, R., Périaux, J., Pironneau, O., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering Series, Springer, Berlin (2004)Google Scholar
  23. 23.
    Lottes, J.W., Fischer, P.F.: Hybrid multigrid/Schwarz algorithms for the spectral element method. J. Sci. Comput. 24, 45 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Tufo, H., Fischer, P.: Fast parallel direct solvers for coarse-grid problems. J. Parallel Distrib. Comput. 61, 151 (2001)CrossRefGoogle Scholar
  25. 25.
    Fischer, P., Lottes, J., Pointer, W., Siegel, A.: Petascale algorithms for reactor hydrodynamics. J. Phys. Conf. Ser. 125, 012076 (2008)CrossRefGoogle Scholar
  26. 26.
    Lottes, J.: Independent quality measures for symmetric AMG components. Tech. Rep. ANL/MCS-P1820-0111, Argonne National Laboratory, Argonne, IL (2011)Google Scholar
  27. 27.
    Boyd, J.: Two comments on filtering for Chebyshev and Legendre spectral and spectral element methods. J. Comput. Phys. 143, 283 (1998)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Fischer, P., Mullen, J.: Filter-based stabilization of spectral element methods, Comptes rendus de l’Académie des sciences, Série I- Analyse numérique 332, 265 (2001)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Malm, J., Schlatter, P., Fischer, P., Henningson, D.: Stabilization of the spectral-element method in convection dominated flows by recovery of skew symmetry. J. Sci. Comput. 57, 254 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Tufo, H., Fischer, P.: In: Proceedigs of the ACM/IEEE SC99 Conference on High Performance Networking and Computing, Gordon Bell Prize, IEEE Computer Soc., CDROM (1999)Google Scholar
  31. 31.
    Deville, M., Fischer, P., Mund, E.: High-Order Methods for Incompressible Fluid Flow. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  32. 32.
    Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numer. Math. 38, 309 (1982)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Tomboulides, A., Lee, J., Orszag, S.: Numerical simulation of low Mach number reactive flows. J. Sci. Comput. 12, 139 (1997)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Fischer, P.: Projection techniques for iterative solution of \({A}{\underline{ x}} ={\underline{ b}} \) with successive right-hand sides. Comput. Methods Appl. Mech. Eng. 163, 193 (1998)CrossRefGoogle Scholar
  35. 35.
    Fischer, P.: In: 22nd AIAA Computational Fluid Dynamics Conference, AIAA Aviation, AIAA 2015-3049 (2015)Google Scholar
  36. 36.
    Walsh, O.: In: Heywood, J., Masuda, K., Rautmann, R., Solonikkov, V. (eds.) The NSE II-Theory and Numerical Methods, pp. 306–309. Springer, Berlin (1992)Google Scholar
  37. 37.
    Pedley, T., Stephanoff, K.: Flow along a channel with a time-dependent indentation in one wall: the generation of vorticity waves. J. Fluid Mech. 160, 337 (1985)CrossRefGoogle Scholar
  38. 38.
    Ralph, M., Pedley, T.: Flow in a channel with a moving indentation. J. Fluid Mech. 190, 87 (1988)CrossRefGoogle Scholar
  39. 39.
    Udaykumar, H., Mittal, R., Rampunggoon, P., Khanna, A.: A sharp interface cartesian grid method for simulating flows with complex moving boundaries. J. Comput. Phys. 174(1), 345 (2001)CrossRefGoogle Scholar
  40. 40.
    Ho, L., Patera, A.: A legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows. Comput. Methods Appl. Mech. Eng. 80, 355 (1990)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Sick, V., Reuss, D., Yang, X., Kuo, T.W.: TCC-III CFD Input Dataset. https://deepblue.lib.umich.edu/handle/2027.42/108382
  42. 42.
    Masud, A., Hughes, T.J.R.: A space-time Galerkin/least-squares finite element formulation of the Navier–Stokes equations for moving domain problems. Comput. Methods Appl. Mech. Eng. 146, 91 (1997)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Kanchi, H., Masud, A.: A 3d adaptive mesh moving scheme. Int. J. Numer. Methods Fluids 54, 923 (2007)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Bello-Maldonado, P., Fischer, P.: Scalable low-order finite element preconditioners for high-order spectral element poisson solvers. (2018). SubmittedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Leadership Computing Facility at Argonne National LaboratoryLemontUSA
  2. 2.Argonne National Laboratory and University of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Mathematics and Computer Science Division at Argonne National LaboratoryLemontUSA
  4. 4.Argonne National Laboratory and Aristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations