Advertisement

A New Proximal Iterative Hard Thresholding Method with Extrapolation for \(\ell _0\) Minimization

  • Xue Zhang
  • Xiaoqun Zhang
Article
  • 73 Downloads

Abstract

In this paper, we consider a non-convex problem which is the sum of \(\ell _0\)-norm and a convex smooth function under a box constraint. We propose one proximal iterative hard thresholding type method with an extrapolation step for acceleration and establish its global convergence results. In detail, the sequence generated by the proposed method globally converges to a local minimizer of the objective function. Finally, we conduct numerical experiments to show the proposed method’s effectiveness on comparison with some other efficient methods.

Keywords

\(\ell _0\) regularization Proximal operator Hard threshholding Extrapolation Local minimizer Global convergence 

Notes

Acknowledgements

This work was partially supported by NSFC (No. 11771288), National key research and development program (No. 2017YFB0202902), the Young Top-notch Talent program of China, and 973 program (No. 2015CB856004).

References

  1. 1.
    Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2008)CrossRefGoogle Scholar
  2. 2.
    Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized gauss–seidel methods. Math. Program. 137(1), 91–129 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Attouch, H., Peypouquet, J.: The rate of convergence of nesterov’s accelerated forward–backward method is actually faster than \(1/k^2\). SIAM J. Optim. 26(3), 1824–1834 (2016).  https://doi.org/10.1137/15M1046095 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bao, C., Dong, B., Hou, L., Shen, Z., Zhang, X., Zhang, X.: Image restoration by minimizing zero norm of wavelet frame coefficients. Inverse Probl. 32(11), 115,004 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Blumensath, T., Davies, M.E.: Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 14(5), 629–654 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bolte, J., Daniilidis, A., Ley, O., Mazet, L., et al.: Characterizations of lojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Am. Math. Soc 362(6), 3319–3363 (2010)CrossRefGoogle Scholar
  10. 10.
    Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1), 459–494 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bot, R.I., Csetnek, E.R., László, S.C.: An inertial forwardcbackward algorithm for the minimization of the sum of two nonconvex functions. EURO J. Comput. Optim. 4(1), 3–25 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chan, R., Chan, T., Shen, L., Shen, Z.: Wavelet algorithms for high-resolution image reconstruction. SIAM J. Sci. Comput. 24, 1408–1432 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dong, B., Zhang, Y.: An efficient algorithm for \(l_0\) minimization in wavelet frame based image restoration. J. Sci. Comput. 54(2), 350–368 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Edmunds, B., Peng, Z., Yin, W.: TMAC: a toolbox of modern async-parallel, coordinate, splitting, and stochastic methods. CAM report 16–38, UCLA (2016)Google Scholar
  17. 17.
    Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kurdyka, K., Parusinski, A.: \(w_f\)-stratification of subanalytic functions and the łojasiewicz inequality. Comptes Rendus Lacadémie Sci. Sér. Math. 318(2), 129–133 (1994)zbMATHGoogle Scholar
  19. 19.
    Li, H., Lin, Z.: Accelerated proximal gradient methods for nonconvex programming. In Advances in Neural Information Processing Systems (NIPS), p. 28. (2015)Google Scholar
  20. 20.
    Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. Les Équations Aux Dérivées Partielles 117, 87–89 (1963)zbMATHGoogle Scholar
  22. 22.
    Lu, Z.: Iterative hard thresholding methods for \(l_0\) regularized convex cone programming. Math. Program. 147(1), 125–154 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: inertial proximal algorithm for non-convex optimization. SIAM J. Imaging Sci. 7(2), 1388–1419 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72(2), 383–390 (1979)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Pock, T., Sabach, S.: Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM J. Imaging Sci. 9(4), 1756–1787 (2016).  https://doi.org/10.1137/16M1064064 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Salzo, S., Villa, S.: Inexact and accelerated proximal point algorithms. J. Convex Anal. 19(4), 1167–1192 (2012)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Shen, Z., Toh, K.C., Yun, S.: An accelerated proximal gradient algorithm for frame-based image restoration via the balanced approach. SIAM J. Imaging Sci. 4(2), 573–596 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci. 6(3), 1758–1789 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zhang, X., Lu, Y., Chan, T.: A novel sparsity reconstruction method from poisson data for 3D bioluminescence tomography. J. Sci. Comput. 50(3), 519–535 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhang, X., Zhang, X.Q.: A note on the complexity of proximal iterative hard thresholding algorithm. J. Oper. Res. Soc. China 3(4), 459–473 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhang, Y., Dong, B., Lu, Z.: \(\ell _0\) minimization for wavelet frame based image restoration. Math. Comput. 82(282), 995–1015 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and Computer ScienceShanxi Normal UniversityShanxiChina
  2. 2.Department of Mathematics and Institute of Natural SciencesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations