Advertisement

Journal of Scientific Computing

, Volume 79, Issue 1, pp 464–492 | Cite as

An Asymptotics-Based Adaptive Finite Element Method for Kohn–Sham Equation

  • Yedan Shen
  • Yang Kuang
  • Guanghui HuEmail author
Article
  • 107 Downloads

Abstract

In Radovitzky and Ortiz (Comput Methods Appl Mech Eng 172(1–4):203–240, 1999), an error estimation technique for nonlinear PDEs is presented to adaptively generating mesh, based on the reduction of the order of the approximate polynomial. In this paper, following a similar analysis framework, we propose an a posteriori error estimation for Kohn–Sham equation by coarsening mesh. An upper bound for the difference of the total energies on two successively refined meshes is derived by the numerical solutions on two meshes through an asymptotic analysis, which finally generates an a posteriori error estimation. A variety of numerical tests show that such an a posteriori error estimation works very well in our h-adaptive finite element method framework. In addition, to further improve the efficiency, we solve a Poisson equation instead of the Kohn–Sham equation on the coarsened mesh. The effectiveness of this improvement is analyzed and numerically examined.

Keywords

Electronic structure calculation Kohn–Sham density functional theory Adaptive finite element method Ground state energy Coarsening mesh 

Notes

Acknowledgements

This work was partially supported by FDCT 029/2016/A1 from Macao SAR, MYRG2017-00189-FST from University of Macau, and National Natural Science Foundation of China (Grant No. 11401608).

References

  1. 1.
    Agmon, S.: Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigen functions of N-Body Schrodinger Operations (MN-29). Princeton University Press, Princeton (2014)CrossRefGoogle Scholar
  2. 2.
    Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis, vol. 37. Wiley, Hoboken (2011)zbMATHGoogle Scholar
  3. 3.
    Akin, J., Singh, M.: Object-oriented Fortran 90 P-adaptive finite element method. Adv. Eng. Softw. 33(7), 461–468 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Azorero, J.G., Alonso, I.P.: Hardy inequalities and some critical elliptic and parabolic problems. J. Differ. Equ. 144(2), 441–476 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bänsch, E., Siebert, K.G.: A Posteriori Error Estimation for Nonlinear Problems by Duality Techniques. Albert-Ludwigs-University, Math. Fak. (1995)Google Scholar
  6. 6.
    Bao, G., Hu, G., Liu, D.: An h-adaptive finite element solver for the calculations of the electronic structures. J. Comput. Phys. 231(14), 4967–4979 (2012)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bao, G., Hu, G., Liu, D.: Numerical solution of the Kohn–Sham equation by finite element methods with an adaptive mesh redistribution technique. J. Sci. Comput. 55(2), 372–391 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bao, G., Hu, G., Liu, D.: Towards translational invariance of total energy with finite element methods for Kohn–Sham equation. Commun. Comput. Phys. 19(1), 1–23 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Belytschko, T., Tabbara, M.: H-Adaptive finite element methods for dynamic problems, with emphasis on localization. Int. J. Numer. Methods Eng. 36(24), 4245–4265 (1993)CrossRefzbMATHGoogle Scholar
  11. 11.
    Castro, A., Appel, H., Oliveira, M., Rozzi, C.A., Andrade, X., Lorenzen, F., Marques, M.A., Gross, E., Rubio, A.: Octopus: a tool for the application of time-dependent density functional theory. Phys. Status Solidi (b) 243(11), 2465–2488 (2006)CrossRefGoogle Scholar
  12. 12.
    Chelikowsky, J.R., Troullier, N., Saad, Y.: Finite-difference-pseudopotential method: electronic structure calculations without a basis. Phys. Rev. Lett. 72(8), 1240 (1994)CrossRefGoogle Scholar
  13. 13.
    Chen, H., Dai, X., Gong, X., He, L., Zhou, A.: Adaptive finite element approximations for Kohn–Sham models. Multiscale Models Simul. 12(4), 1828–1869 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chen, H., Gong, X., He, L., Yang, Z., Zhou, A.: Numerical analysis of finite dimensional approximations of Kohn–Sham models. Adv. Comput. Math. 38(2), 225–256 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Durán, R.G., Padra, C., Rodríguez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Model. Methods Appl. Sci. 13(08), 1219–1229 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fiolhais, C., Nogueira, F., Marques, M.A.: A Primer in Density Functional Theory, vol. 620. Springer, Berlin (2003)CrossRefzbMATHGoogle Scholar
  18. 18.
    Gygi, F.: Electronic-structure calculations in adaptive coordinates. Phys. Rev. B 48(16), 11692 (1993)CrossRefGoogle Scholar
  19. 19.
    Gygi, F., Galli, G.: Real-space adaptive-coordinate electronic-structure calculations. Phys. Rev. B 52(4), R2229 (1995)CrossRefGoogle Scholar
  20. 20.
    Heuveline, V., Rannacher, R.: A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15(1), 107–138 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hu, G., Xie, H., Xu, F.: A multilevel correction adaptive finite element method for Kohn–Sham equation. J. Comput. Phys. 355, 436–449 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Johnson III, R.D.: NIST Computational Chemistry Comparison and Benchmark Database. http://cccbdb.nist.gov/ (2016). Accessed 6 Oct 2018
  23. 23.
    Jiang, X., Zhang, L., Zheng, W.: Adaptive hp-finite element computations for time-harmonic Maxwell’s equations. Commun. Comput. Phys. 13(2), 559–582 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Knyazev, A.V., Argentati, M.E., Lashuk, I., Ovtchinnikov, E.E.: Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in HYPRE and PETSc. SIAM J. Sci. Comput. 29(5), 2224–2239 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kombe, I.: Hardy, Rellich and uncertainty principle inequalities on Carnot groups. arXiv preprint arXiv:math/0611850 (2006)
  27. 27.
    Kormann, K.: A time-space adaptive method for the Schrödinger equation. Commun. Comput. Phys. 20(1), 60–85 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996)CrossRefGoogle Scholar
  29. 29.
    Kuang, Y., Hu, G.: An adaptive FEM with ITP approach for steady Schrödinger equation. Int. J. Comput. Math. 95(1), 187–201 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Larson, M.G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal. 38(2), 608–625 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Li, R., Tang, T., Zhang, P.: Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 170(2), 562–588 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Lin, L., Lu, J., Ying, L., Weinan, E.: Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework I: total energy calculation. J. Comput. Phys. 231(4), 2140–2154 (2012)CrossRefzbMATHGoogle Scholar
  33. 33.
    Marques, M.A., Oliveira, M.J., Burnus, T.: Libxc: a library of exchange and correlation functionals for density functional theory. Comput. Phys. Commun. 183(10), 2272–2281 (2012)CrossRefGoogle Scholar
  34. 34.
    Motamarri, P., Nowak, M.R., Leiter, K., Knap, J., Gavini, V.: Higher-order adaptive finite-element methods for Kohn–Sham density functional theory. J. Comput. Phys. 253, 308–343 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Pask, J., Sterne, P.: Finite element methods in ab initio electronic structure calculations. Model. Simul. Mater. Sci. Eng. 13(3), R71 (2005)CrossRefGoogle Scholar
  36. 36.
    Radovitzky, R., Ortiz, M.: Error estimation and adaptive meshing in strongly nonlinear dynamic problems. Comput. Methods Appl. Mech. Eng. 172(1–4), 203–240 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Tsuchida, E., Tsukada, M.: Electronic-structure calculations based on the finite-element method. Phys. Rev. B 52(8), 5573 (1995)CrossRefGoogle Scholar
  38. 38.
    Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, Hoboken (1996)zbMATHGoogle Scholar
  39. 39.
    Xie, C., Hu, X.: Finite element simulations with adaptively moving mesh for the reaction diffusion system. Numer. Math. Theory Methods Appl. 9(4), 686–704 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Yang, C., Meza, J.C., Lee, B., Wang, L.W.: KSSOLV-a MATLAB toolbox for solving the Kohn–Sham equations. ACM Trans. Math. Softw. (TOMS) 36(2), 10 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Yserentant, H.: Regularity and Approximability of Electronic Wave Functions. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  42. 42.
    Zhang, G., Lin, L., Hu, W., Yang, C., Pask, J.E.: Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: force, vibration, and molecular dynamics calculations. J. Comput. Phys. 335, 426–443 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Zhang, H., Zegeling, P.A.: A moving mesh finite difference method for non-monotone solutions of non-equilibrium equations in porous media. Commun. Comput. Phys. 22(4), 935–964 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MacauMacauChina
  2. 2.Zhuhai UM Science and Technology Research InstituteZhuhaiChina

Personalised recommendations