Advertisement

Journal of Scientific Computing

, Volume 77, Issue 3, pp 1762–1779 | Cite as

A Finite Element Method with Strong Mass Conservation for Biot’s Linear Consolidation Model

  • Guido Kanschat
  • Beatrice Riviere
Article
  • 35 Downloads

Abstract

An H(div) conforming finite element method for solving the linear Biot equations is analyzed. Formulations for the standard mixed method are combined with formulation of interior penalty discontinuous Galerkin method to obtain a consistent scheme. Optimal convergence rates are obtained.

Keywords

Biot system Mixed method Discontinuous Galerkin Error estimates 

Notes

Acknowledgements

Computations in this article were produced using the deal.II library [3].

References

  1. 1.
    Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arnold, D.N., Boffi, D., Falk, R.S.: Quadrilateral H(div) finite elements. SIAM J. Numer. Anal. 42(6), 2429–2451 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kanschat, G., Kronbichler, M., Maier, M., Turcksin, B., Wells, D.: The deal.II library, version 8.4. J. Numer. Math. 24, 135–141 (2016)Google Scholar
  4. 4.
    Barry, S., Mercer, G.: Exact solutions for two-dimensional time-dependent flow and deformation within a poroelastic medium. J. Appl. Mech. 66(2), 536–540 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Biot, M., Willis, D.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)MathSciNetGoogle Scholar
  6. 6.
    Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)CrossRefGoogle Scholar
  7. 7.
    Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer, Berlin, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Brenner, S.C.: Korn’s inequalities for piecewise \(h^1\) vector fields. Math. Comput. 73(247), 1067–1087 (2004)CrossRefGoogle Scholar
  9. 9.
    Hansbo, P., Larson, M.G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Computer Methods Appl. Mech. Eng. 191(17), 1895–1908 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hong, Q., Kraus, J.: Parameter-robust stability of classical three-field formulation of Biot’s consolidation model (2017). arXiv preprint arXiv:1706.00724
  11. 11.
    Mattheij, R., Molenaar, J.: Ordinary Differential Equations in Theory and Practice. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (2002)CrossRefGoogle Scholar
  12. 12.
    Murad, M.A., Loula, A.F.: On stability and convergence of finite element approximations of Biot’s consolidation problem. Int. J. Numer. Methods Eng. 37(4), 645–667 (1994)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Oyarzúa, R., Ruiz-Baier, R.: Locking-free finite element methods for poroelasticity. SIAM J. Numer. Anal. 54(5), 2951–2973 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity i: the continuous in time case. Comput. Geosci. 11(2), 131–144 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Phillips, P.J., Wheeler, M.F.: A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12(4), 417–435 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (2008)CrossRefGoogle Scholar
  17. 17.
    Riviere, B., Shaw, S., Wheeler, M., Whiteman, J.: Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity. Numerische Mathematik 95(2), 347–376 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Schötzau, D., Schwab, C., Toselli, A.: \(hp\)-DGFEM for incompressible flows. SIAM J. Numer. Anal. 40, 2171–2194 (2003)CrossRefGoogle Scholar
  19. 19.
    Showalter, R.E.: Poroelastic filtration coupled to Stokes flow. Lect. Notes Pure Appl. Math. 242, 229–241 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yi, S.Y.: A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model. Numer. Methods Partial Differ. Equ. 29(5), 1749–1777 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Yi, S.Y.: Convergence analysis of a new mixed finite element method for Biot’s consolidation model. Numer. Methods Partial Differ. Equ. 30(4), 1189–1210 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Interdisciplinary Center for Scientific Computing (IWR)Heidelberg UniversityHeidelbergGermany
  2. 2.Department of Computational and Applied MathematicsRice UniversityHoustonUSA

Personalised recommendations