Advertisement

A Global Divergence Conforming DG Method for Hyperbolic Conservation Laws with Divergence Constraint

  • Praveen ChandrashekarEmail author
Article
  • 61 Downloads

Abstract

We propose a globally divergence conforming discontinuous Galerkin (DG) method on Cartesian meshes for curl-type hyperbolic conservation laws based on directly evolving the face and cell moments of the Raviart–Thomas approximation polynomials. The face moments are evolved using a 1-D discontinuous Gakerkin method that uses 1-D and multi-dimensional Riemann solvers while the cell moments are evolved using a standard 2-D DG scheme that uses 1-D Riemann solvers. The scheme can be implemented in a local manner without the need to solve a global mass matrix which makes it a truly DG method and hence useful for explicit time stepping schemes for hyperbolic problems. The scheme is also shown to exactly preserve the divergence of the vector field at the discrete level. Numerical results using second and third order schemes for induction equation are presented to demonstrate the stability, accuracy and divergence preservation property of the scheme.

Keywords

Hyperbolic conservation laws Curl-type equations Discontinuous Galerkin Constraint-preserving Divergence-free Induction equation 

Notes

Acknowledgements

The author would like to acknowledge the support received from the Airbus Chair on Mathematics of Complex Systems established at TIFR-CAM by the Airbus Foundation for carrying out this work. The author also thanks Dinshaw S. Balsara for many discussions which were helpful in formulating these ideas. Finally, the author would like to thank the anonymous reviewer whose comments helped to improve the presentation of the paper.

References

  1. 1.
    Arnold, D.N., Boffi, D., Falk, R.S.: Quadrilateral H(div) finite elements. SIAM J. Numer. Anal. 42, 2429–2451 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Balsara, D.S.: Divergence-free adaptive mesh refinement for magnetohydrodynamics. J. Comput. Phys. 174, 614–648 (2001)CrossRefGoogle Scholar
  3. 3.
    Balsara, D.S.: Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. Ser. 151, 149 (2004)CrossRefGoogle Scholar
  4. 4.
    Balsara, D.S.: Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics. J. Comput. Phys. 228, 5040–5056 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Balsara, D.S.: Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229, 1970–1993 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Balsara, D.S.: A two-dimensional HLLC riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 231, 7476–7503 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Balsara, D.S., Amano, T., Garain, S., Kim, J.: A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional riemann solver for electromagnetism. J. Comput. Phys. 318, 169–200 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Balsara, D.S., Dumbser, M.: Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional riemann solvers. J. Comput. Phys. 299, 687–715 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Balsara, D.S., Dumbser, M.: Multidimensional riemann problem with self-similar internal structure. Part II—application to hyperbolic conservation laws on unstructured meshes. J. Comput. Phys. 287, 269–292 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Balsara, D.S., Dumbser, M., Abgrall, R.: Multidimensional HLLC Riemann solver for unstructured meshes—with application to Euler and MHD flows. J. Comput. Phys. 261, 172–208 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Balsara, D.S., Garain, S., Taflove, A., Montecinos, G.: Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution—part-II, higher order FVTD schemes. Submitted (2017)Google Scholar
  12. 12.
    Balsara, D.S., Käppeli, R.: Von Neumann stability analysis of globally divergence-free RKDG schemes for the induction equation using multidimensional riemann solvers. J. Comput. Phys. 336, 104–127 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Balsara, D.S., Nkonga, B.: Multidimensional riemann problem with self-similar internal structure—part iii—a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems. J. Comput. Phys. 346, 25–48 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Balsara, D.S., Taflove, A., Garain, S., Montecinos, G.: Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution–part i, second-order FVTD schemes. J. Comput. Phys. 349, 604–635 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33, 24/1–24/27 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Besse, N., Kröner, D.: Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system. ESAIM: M2AN 39, 1177–1202 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Brackbill, J., Barnes, D.: The effect of nonzero div(B) on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35, 426–430 (1980)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)CrossRefGoogle Scholar
  19. 19.
    Cai, W., Hu, J., Zhang, S.: High order hierarchical divergence-free constrained transport H(div) finite element method for magnetic induction equation. Numer. Math. Theor. Methods Appl. 10, 243–254 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Cai, W., Wu, J., Xin, J.: Divergence-free H(div)-conforming hierarchical bases for magnetohydrodynamics (MHD). Commun. Math. Stat. 1, 19–35 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Chandrashekar, P., Klingenberg, C.: Entropy stable finite volume scheme for ideal compressible mhd on 2-D Cartesian meshes. SIAM J. Numer. Anal. 54, 1313–1340 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194, 588–610 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645–673 (2002)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows—a constrained transport method. Astrophys. J. 332, 659–677 (1988)CrossRefGoogle Scholar
  25. 25.
    Fu, P., Li, F., Xu, Y.: Globally divergence-free discontinuous Galerkin methods for ideal magnetohydrodynamic equations. J. Sci. Comput. (2018).  https://doi.org/10.1007/s10915-018-0750-6
  26. 26.
    Fuchs, F.G., Karlsen, K.H., Mishra, S., Risebro, N.H.: Stable upwind schemes for the magnetic induction equation. ESAIM: M2AN 43, 825–852 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Hu, K., Ma, Y., Xu, J.: Stable finite element methods preserving \(\nabla \cdot b=0\) exactly for mhd models. Numer. Math. 135, 371–396 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Koley, U., Mishra, S., Risebro, N.H., Svärd, M.: Higher order finite difference schemes for the magnetic induction equations. BIT Numer. Math. 49, 375–395 (2009)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Koley, U., Mishra, S., Risebro, N.H., Svärd, M.: Higher-order finite difference schemes for the magnetic induction equations with resistivity. IMA J. Numer. Anal. 32, 1173–1193 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for MHD equations. J. Sci. Comput. 22–23, 413–442 (2005)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Li, F., Xu, L.: Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations. J. Comput. Phys. 231, 2655–2675 (2012)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Li, F., Xu, L., Yakovlev, S.: Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field. J. Comput. Phys. 230, 4828–4847 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Nedelec, J.C.: Mixed finite elements in \(r^3\). Numer. Math. 35, 315–341 (1980)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Powell, K.: An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). Technical Report 94-24, ICASE, NASA Langley (1994)Google Scholar
  36. 36.
    Quarteroni, A.M., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Publishing Company, Incorporated, 1st ed. 1994. 2nd printing ed. (2008)Google Scholar
  37. 37.
    Raviart, P.A., Thomas, J.M.: A Mixed Finite Element Method for 2-nd Order Elliptic Problems, pp. 292–315. Springer, Berlin (1977)Google Scholar
  38. 38.
    Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96, 771–800 (2004)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Toth, G.: The div(B)=0 constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605–652 (2000)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Winters, A.R., Gassner, G.J.: Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations. J. Comput. Phys. 304, 72–108 (2016)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Yang, H., Li, F.: Stability analysis and error estimates of an exactly divergence-free method for the magnetic induction equations. ESAIM: M2AN 50, 965–993 (2016)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.TIFR Center for Applicable MathematicsBangaloreIndia

Personalised recommendations