Advertisement

Journal of Scientific Computing

, Volume 78, Issue 3, pp 1942–1961 | Cite as

A Contour-Integral Based Method for Counting the Eigenvalues Inside a Region

  • Guojian YinEmail author
Article
  • 82 Downloads

Abstract

In many applications, the information about the number of eigenvalues inside a given region is required. In this work, we develop a contour-integral based method for this purpose. Our method is motivated by two findings. There exist methods for estimating the number of eigenvalues inside a region in the complex plane, but our method is able to compute the number exactly. Our method has a good potential to be implemented on a high-performance parallel architecture. Numerical experiments are reported to show the viability of our method.

Keywords

Eigenvalue Generalized eigenvalue problem Contour integral Spectral projection 

Mathematics Subject Classification

15A18 58C40 65F15 

Notes

Acknowledgements

I would like to thank Professor Raymond H. Chan, my thesis advisor, for his help in preparing this paper. I also would like to thank the anonymous reviewers for their useful suggestions which have greatly improved this paper. This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 11701593.

References

  1. 1.
    Ahlfors, L.: Complex Analysis, 3rd edn. McGraw-Hill, Inc., New York City (1979)zbMATHGoogle Scholar
  2. 2.
    Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., Van der Vorst, H.: Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia (2000)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bai, Z., Demmel, J., Gu, G.: An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblem. Numer. Math. 76, 279–308 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boisvert, R.F., Pozo, R., Remington, K., Barrett, R., Dongarra, J.: The matrix market: a web resource for test matrix collections. In: Boisvert, R.F. (ed.) Quality of Numerical Software: Assessment and Enhancement, IFIP Advances in Information and Communication Technology, pp. 125–137. Chapman & Hall, London (1997)CrossRefGoogle Scholar
  5. 5.
    Cerdá, J., Soria, F.: Accurate and transferable extended Hückel-type tight-binding parameters. Phys. Rev. B 61, 7965 (2000)CrossRefGoogle Scholar
  6. 6.
    Chan, T.T.: Rank revealing QR factorizations. Linear Algebra Appl. 88–89, 67–82 (1987)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, Orlando (1984)zbMATHGoogle Scholar
  8. 8.
    Demmel, J.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)CrossRefzbMATHGoogle Scholar
  9. 9.
    Di Napoli, E., Polizzi, E., Saad, Y.: Efficient estimation of eigenvalue counts in an interval. arXiv:1308.4275
  10. 10.
    Futamura, Y., Tadano, H., Sakurai, T.: Parallel stochastic estimation method of eigenvalue distribution. JSIAM Lett. 2, 127–130 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gantmacher, F.R.: The Theory of Matrices. Chelsea, New York (1959)zbMATHGoogle Scholar
  12. 12.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  13. 13.
    Grimes, R.G., Lewis, J.D., Simon, H.D.: A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems. SIAM J. Matrix Anal. Appl. 15, 228–272 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I: Modelling, State Space Analysis and Robustness. Springer, Berlin (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hoshi, T., Yamamoto, S., Fujiwara, T., Sogabe, T., Zhang, S.L.: An order-\(N\) electronic structure theory with generalized eigenvalue equations and its application to a ten-million-atom system. J. Phys. Condens. Matter 24, 165502 (2012)CrossRefGoogle Scholar
  16. 16.
    Kamgnia, E.R., Philippe, B.: Counting eigenvalues in domains of the complex field. arXiv:1110.4797
  17. 17.
    Lin, L., Saad, Y., Yang, C.: Approximating spectral densities of large matrices. arXiv:1308.5467
  18. 18.
    Moler, C.B., Stewart, G.W.: An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal. 10, 241–256 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Polizzi, E.: Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79, 115112 (2009)CrossRefGoogle Scholar
  20. 20.
    Ruhe, A.: Rational Krylov: a practical algorithm for large sparse nonsymmetric matrix pencils. SIAM J. Sci. Comput. 19, 1535–1551 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Saad, Y.: Numerical Methods for Large Eigenvalue Problems. SIAM, Philadelphia (2011)CrossRefzbMATHGoogle Scholar
  22. 22.
    Sakurai, T., Futamura, Y., Tadano, H.: Efficient parameter estimation and implementation of a contour integral-based eigensolver. J. Algorithms Comput. Technol. 7, 249–269 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems using numerical integration. J. Comput. Appl. Math. 159, 119–128 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sakurai, T., Tadano, H.: CIRR: a Rayleigh–Ritz type method with contour integral for generalized eigenvalue problems. Hokkaido Math. J. 36, 745–757 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd edn. Springer, New York (1998)CrossRefzbMATHGoogle Scholar
  26. 26.
    Stewart, G.W.: Matrix Algorithms, Vol. II, Eigensystems. SIAM, Philadelphia (2001)CrossRefzbMATHGoogle Scholar
  27. 27.
    Tang, P., Polizzi, E.: FEAST as a subspace iteration eigensolver accelerated by approximate spectral projection. SIAM J. Matrix Anal. Appl. 35, 354–390 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Yin, G., Chan, R., Yueng, M.-C.: A FEAST algorithm with oblique projection for generalized eigenvalue problems. Numer. Linear Algebra Appl. 24, e2092 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsSun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations