Advertisement

Journal of Scientific Computing

, Volume 78, Issue 3, pp 1632–1658 | Cite as

A Fourth-Order Kernel-Free Boundary Integral Method for the Modified Helmholtz Equation

  • Yaning Xie
  • Wenjun YingEmail author
Article
  • 113 Downloads

Abstract

Based on the kernel-free boundary integral method proposed by Ying and Henriquez (J Comput Phys 227(2):1046–1074, 2007), which is a second-order accurate method for general elliptic partial differential equations, this work develops it to be a fourth-order accurate version for the modified Helmholtz equation. The updated method is in line with the original one. Unlike the traditional boundary integral method, it does not need to know any analytical expression of the fundamental solution or Green’s function in evaluation of boundary or volume integrals. Boundary value problems under consideration are reformulated into Fredholm boundary integral equations of the second kind, whose corresponding discrete forms are solved with the simplest Krylov subspace iterative method, the Richardson iteration. During each iteration, a Cartesian grid based nine-point compact difference scheme is used to discretize the simple interface problem whose solution is the boundary or volume integral in the BIEs. The resulting linear system is solved by a fast Fourier transform based solver, whose computational work is roughly proportional to the number of grid nodes in the Cartesian grid used. As the discrete boundary integral equations are well-conditioned, the iteration converges within an essentially fixed number of steps, independent of the mesh parameter. Numerical results are presented to verify the solution accuracy and demonstrate the algorithm efficiency.

Keywords

Elliptic partial differential equation Kernel-free boundary integral method Cartesian grid method Nine-point compact difference scheme 

References

  1. 1.
    Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  2. 2.
    Ben Avraham, D., Fokas, A.S.: The solution of the modified Helmholtz equation in a wedge and an application to diffusion-limited coalescence. Phys. Lett. A 263(4–6), 355–359 (1999)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bakker, M.: Modeling groundwater flow to elliptical lakes and through multi-aquifer elliptical inhomogeneities. Adv. Water Resour. 27(5), 497–506 (2004)Google Scholar
  4. 4.
    Bakker, M., Kuhlman, K.L.: Computational issues and applications of line-elements to model subsurface flow governed by the modified Helmholtz equation. Adv. Water Resour. 34(9), 1186–1194 (2011)Google Scholar
  5. 5.
    Banerjee, P.K., Butterfield, R.: Boundary Element Methods in Engineering Science, vol. 17. McGraw-Hill, London (1981)zbMATHGoogle Scholar
  6. 6.
    Barnes, J., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Nature 324(6096), 446 (1986)Google Scholar
  7. 7.
    Barnes, J.E.: A modified tree code: Don’t laugh. It runs. J. Comput. Phys. 87(1), 161–170 (1990)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bazant, M.Z., Thornton, K., Ajdari, A.: Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70(2), 021506 (2004)Google Scholar
  9. 9.
    Beale, J.T., Layton, A.T.: On the accuracy of finite difference methods for elliptic problems with interfaces. Commun. Appl. Math. Comput. Sci. 1(1), 91–119 (2006)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Brebbia, C., Dominguez, J.: Boundary element methods for potential problems. Appl. Math. Model. 1(7), 372–378 (1977)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Chapko, R., Kress, R.: Rothe’s method for the heat equation and boundary integral equations. J. Integral Equ. Appl. 9, 47–69 (1997)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Cheng, H., Crutchfield, W.Y., Gimbutas, Z., Greengard, L.F., Ethridge, J.F., Huang, J., Rokhlin, V., Yarvin, N., Zhao, J.: A wideband fast multipole method for the Helmholtz equation in three dimensions. J. Comput. Phys. 216(1), 300–325 (2006)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Cheng, H., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155(2), 468–498 (1999)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Cheng, H., Huang, J., Leiterman, T.J.: An adaptive fast solver for the modified Helmholtz equation in two dimensions. J. Comput. Phys. 211(2), 616–637 (2006)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Di Gioia, A.: Fast multipole accelerated boundary element techniques for large-scale problems, with applications to MEMS. Ph.D. thesis, Università di Trento. Dipartimento di ingegneria meccanica e strutturale (2005)Google Scholar
  16. 16.
    Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Feng, H., Barua, A., Li, S., Li, X.: A parallel adaptive treecode algorithm for evolution of elastically stressed solids. Commun. Comput. Phys. 15(2), 365–387 (2014)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Gibou, F., Fedkiw, R., Cheng, L.T., Kang, M.: A second order accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176, 205–227 (2002)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Gibou, F., Fedkiw, R.P.: A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem. J. Comput. Phys. 202, 577–601 (2005)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Greengard, L., Huang, J., Rokhlin, V., Wandzura, S.: Accelerating fast multipole methods for the Helmholtz equation at low frequencies. IEEE Comput. Sci. Eng. 5(3), 32–38 (1998)Google Scholar
  21. 21.
    Greengard, L., Kropinski, M.C.: An integral equation approach to the incompressible Navier–Stokes equations in two dimensions. SIAM J. Sci. Comput. 20(1), 318–336 (1998)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer. 6, 229–269 (1997)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Hackbusch, W.: Integral Equations, Theory and Numerical Treatment. Birkhäuser, Basel (1995)zbMATHGoogle Scholar
  25. 25.
    Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54(4), 463–491 (1989)MathSciNetzbMATHGoogle Scholar
  26. 26.
    He, X., Lin, T., Lin, Y.: Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions. Int. J. Numer. Anal. Model. 8(2), 284–301 (2011)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Hewett, D.W.: The embedded curved boundary method for orthogonal simulation meshes. J. Comput. Phys. 138(2), 585–616 (1997)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Hou, S., Liu, X.D.: A numerical method for solving variable coefficient elliptic equation with interfaces. J. Comput. Phys. 202, 411–445 (2005)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Houstis, E.N., Papatheodorou, T.S.: Algorithm 543: FFT9, fast solution of Helmholtz-type partial differential equations D3. ACM Trans. Math. Softw. 5(4), 490–493 (1979)zbMATHGoogle Scholar
  30. 30.
    Houstis, E.N., Papatheodorou, T.S.: High-order fast elliptic equation solver. ACM Trans. Math. Softw. 5(4), 431–441 (1979)zbMATHGoogle Scholar
  31. 31.
    Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations. Springer, Berlin (2008)zbMATHGoogle Scholar
  32. 32.
    Jaswon, M.: Integral equation methods in potential theory. I. In: Proceedings of the Royal Society of London A, vol. 275, pp. 23–32. The Royal Society (1963)Google Scholar
  33. 33.
    Johansen, H., Colella, P.: A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains. J. Comput. Phys. 147(1), 60–85 (1998)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Kropinski, M.C.A., Quaife, B.D.: Fast integral equation methods for Rothe’s method applied to the isotropic heat equation. Comput. Math. Appl. 61(9), 2436–2446 (2011)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Kropinski, M.C.A., Quaife, B.D.: Fast integral equation methods for the modified Helmholtz equation. J. Comput. Phys. 230(2), 425–434 (2011)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Kuhlman, K.L., Neuman, S.P.: Laplace-transform analytic-element method for transient porous-media flow. J. Eng. Math. 64(2), 113 (2009)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Le, D.V., Khoo, B.C., Peraire, J.: An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries. J. Comput. Phys. 220(1), 109–138 (2006)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Leveque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31(4), 1019–1044 (1994)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Li, H., Huang, J.: High accuracy solutions of the modified Helmholtz equation. In: Information Technology and Intelligent Transportation Systems, pp. 29–37. Springer (2017)Google Scholar
  40. 40.
    Li, Z.: A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. Anal. 35(1), 230–254 (1998)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Li, Z., Ito, K.: The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, vol. 33. SIAM, Philadelphia (2006)zbMATHGoogle Scholar
  42. 42.
    Lindsay, K., Krasny, R.A.: A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow. J. Comput. Phys. 172(2), 879–907 (2001)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Liu, Y., Nishimura, N.: The fast multipole boundary element method for potential problems: a tutorial. Eng. Anal. Bound. Elem. 30(5), 371–381 (2006)zbMATHGoogle Scholar
  44. 44.
    Marques, A.N., Nave, J.C., Rosales, R.R.: A correction function method for Poisson problems with interface jump conditions. J. Comput. Phys. 230, 7567–7597 (2011)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Marques, A.N., Nave, J.C., Rosales, R.R.: High order solution of Poisson problems with piecewise constant coefficients and interface jumps. J. Comput. Phys. 335, 497–515 (2017)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Mayo, A.: The fast solution of Poisson’s and the biharmonic equations on irregular regions. SIAM J. Numer. Anal. 21(2), 285–299 (1984)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Mayo, A.: Fast high order accurate solution of Laplace’s equation on irregular regions. SIAM J. Sci. Stat. Comput. 6(1), 144–157 (1985)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Mayo, A.: The rapid evaluation of volume integrals of potential theory on general regions. J. Comput. Phys. 100(2), 236–245 (1992)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Phillips, J.R., White, J.K.: A precorrected-FFT method for electrostatic analysis of complicated 3-D structures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 16(10), 1059–1072 (1997)Google Scholar
  51. 51.
    Politis, C.G., Papalexandris, M.V., Athanassoulis, G.A.: A boundary integral equation method for oblique water-wave scattering by cylinders governed by the modified helmholtz equation. Appl. Ocean Res. 24(4), 215–233 (2002)Google Scholar
  52. 52.
    Quaife, B.D.: Fast integral equation methods for the modified Helmholtz equation. Ph.D. thesis, Science: Department of Mathematics (2011)Google Scholar
  53. 53.
    Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60(2), 187–207 (1985)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Rosser, J.B.: Nine-point difference solutions for Poisson’s equation. Comput. Math. Appl. 1(3–4), 351–360 (1975)zbMATHGoogle Scholar
  55. 55.
    Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Samarskii, A.A.: The Theory of Difference Schemes, vol. 240. CRC Press, London (2001)zbMATHGoogle Scholar
  57. 57.
    Sauter, S., Schwab, C.: Boundary Element Methods. Springer, Berlin (2010)zbMATHGoogle Scholar
  58. 58.
    Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements. Springer, Berlin (2007)Google Scholar
  59. 59.
    Strack, O.D.: Groundwater Mechanics. Prentice Hall, Englewood Cliffs (1989)Google Scholar
  60. 60.
    Ying, L., Biros, G., Zorin, D.: A kernel-independent adaptive fast multipole algorithm in two and three space dimensions. J. Comput. Phys. 196, 591–626 (2004)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Ying, L., Biros, G., Zorin, D.: A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains. J. Comput. Phys. 219, 247–275 (2006)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Ying, W., Henriquez, C.S.: A kernel-free boundary integral method for elliptic boundary value problems. J. Comput. Phys. 227(2), 1046–1074 (2007)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Ying, W., Wang, W.C.: A kernel-free boundary integral method for implicitly defined surfaces. J. Comput. Phys. 252, 606–624 (2013)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Ying, W., Wang, W.C.: A kernel-free boundary integral method for variable coefficients elliptic PDEs. Commun. Comput. Phys. 15(4), 1108–1140 (2014)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Zhou, Y.C., Zhao, S., Feig, M., Wei, G.W.: High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources. J. Comput. Phys. 213(1), 1–30 (2006)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
Corrected publication October/2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesShanghai Jiao Tong UniversityMinhang, ShanghaiPeople’s Republic of China
  2. 2.School of Mathematical Sciences, MOE-LSC and Institute of Natural SciencesShanghai Jiao Tong UniversityMinhang, ShanghaiPeople’s Republic of China

Personalised recommendations