Advertisement

Journal of Scientific Computing

, Volume 78, Issue 3, pp 1438–1466 | Cite as

Analysis of Fully Discrete Approximations for Dissipative Systems and Application to Time-Dependent Nonlocal Diffusion Problems

  • Qiang Du
  • Lili Ju
  • Jianfang LuEmail author
Article
  • 181 Downloads

Abstract

In this paper we first present stability and error analysis of the fully discrete numerical schemes for general dissipative systems, in which the implicit Runge–Kutta (IRK) method is adopted for time integration. Under suitable conditions on the IRK time stepping method that we refer as the total stability, a priori error estimates can be simultaneously obtained. Then we apply such time-marching techniques and analysis framework to one-dimensional time-dependent nonlocal diffusion problems, together with the discontinuous Galerkin method being used for spatial discretization. Unconditional stability of approximations of both primal and auxiliary variables and the priori error estimates for the corresponding fully discrete systems are proved, and the results indicate the schemes are asymptotically compatible. In addition, long time asymptotic behavior of the approximate solutions is also investigated. Various numerical experiments are finally performed to verify the theoretical results.

Keywords

Fully discrete Strong stability Implicit Runge–Kutta Nonlocal diffusion Asymptotic compatibility 

Mathematics Subject Classification

65M60 65R20 65L06 65L07 45A05 

References

  1. 1.
    Bates, P.W., Chmaj, A.: An integrodifferential model for phase transitions: stationary solutions in higher space dimensions. J. Stat. Phys. 95, 1119–1139 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, London (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  4. 4.
    Cheng, Y., Zhang, Q.: Local analysis of local discontinuous Galerkin method with generalized alternating numerical flux for one-dimensional singularity perturbed problem. J. Sci. Comput. 72, 1–28 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cheng, Y., Zhang, Q.: Local analysis of the fully discrete local discontinuous Galerkin method for the time-dependent singularly perturbed problem. J. Comput. Math. 35, 265–288 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Crouzeix, M., Hundsdorfer, W.H., Spijker, M.N.: On the existence of solutions to the algebraic equations in implicit Runge–Kutta methods. BIT Numer. Math. 23, 84–91 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III: One dimensional systems. J. Computat. Phys. 84, 90–113 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cockburn, B., Shu, C.-W.: The Runge–Kutta local projection \(P^1\)-discontinuous-Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. 25, 337–361 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws. II: General framework. Math. Comput. 52, 411–435 (1989)zbMATHGoogle Scholar
  10. 10.
    Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin finite element method for conservation laws. V: Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dekker, K.: Error bounds for the solution to the algebraic equations in Runge–Kutta methods. BIT Numer. Math. 24, 347–356 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54, 667–696 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Du, Q., Ju, L., Lu, J.: A discontinuous Galerkin method for one-dimensional time-dependent nonlocal diffusion problems. Math. Comput. (2017).  https://doi.org/10.1090/mcom/3333 zbMATHGoogle Scholar
  15. 15.
    Du, Q., Ju, L., Tian, L., Zhou, K.: A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models. Math. Comput. 82, 1889–1922 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dong, B., Shu, C.-W.: Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47, 3240–3268 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Du, Q., Yang, J.: Asymptotically compatible Fourier spectral approximations of nonlocal Allen–Cahn equations. SIAM J. Numer. Anal. 54, 1899–1919 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Eftimie, R., De Vries, G., Lewis, M.A.: Complex spatial group patterns result from different animal communication mechanisms. Proc. Natl. Acad. Sci. 104, 6974–6979 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Epshteyn, Y., Izmirlioglu, A.: Fully discrete analysis of a discontinuous finite element method for the Keller–Segel chemotaxis model. J. Sci. Comput. 40, 211–256 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fife, P.: Some nonclassical trends in parabolic and parabolic-like evolutions. In: Kirkilionis, M., Krömker, S., Rannacher, R., Tomi, F. (eds.) Trends in Nonlinear Analysis, pp. 153–191. Springer, Berlin (2003)CrossRefGoogle Scholar
  21. 21.
    Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58, 1675–1686 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, 1005–1028 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, New York (1993)zbMATHGoogle Scholar
  25. 25.
    Hochbruck, M., Pažur, T.: Implicit Runge–Kutta methods and discontinuous Galerkin discretizations for linear Maxwell’s equations. SIAM J. Numer. Anal. 53, 485–507 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  27. 27.
    Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 59, 373–392 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Luo, J., Shu, C.-W., Zhang, Q.: A priori error estimates to smooth solutions of the third order Runge–Kutta discontinuous Galerkin method for symmetrizable system of conservation laws. Math. Model. Numer. Anal. 49, 991–1018 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Levy, D., Tadmor, E.: From semidiscrete to fully discrete: stability of Runge–Kutta schemes by the energy method. SIAM Rev. 40, 40–73 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Rosasco, L., Belkin, M., Vito, E.D.: On learning with integral operators. J. Mach. Learn. Res. 11, 905–934 (2010)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Silling, S.A., Lehoucq, R.B.: Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–168 (2010)CrossRefGoogle Scholar
  33. 33.
    Sun, Z., Shu, C.-W.: Stability of the fourth order Runge–Kutta method for time-dependent partial differential equations. Ann. Math. Sci. Appl. 2, 255–284 (2017)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Tadmor, E.: From semidiscrete to fully discrete: stability of Runge–Kutta schemes by the energy method. II. In: Estep, D., Tavener, S. (eds.) Collected Lectures on the Preservation Of Stability Under Discretization, Proceedings of the Workshop on the Preservation of Stability Under Discretization, Colorado State University, Fort Collins, CO (2001); Proceedings in Applied Mathematics, vol. 109, pp. 25–49. SIAM (2002)Google Scholar
  35. 35.
    Tian, X., Du, Q.: Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51, 3458–3482 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Tian, X., Du, Q.: Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM J. Numer. Anal. 52, 1641–1665 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Tian, X., Du, Q.: Nonconforming discontinuous Galerkin methods for nonlocal variational problems. SIAM J. Numer. Anal. 53, 762–781 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Tian, H., Ju, L., Du, Q.: Nonlocal convection–diffusion problems and finite element approximations. Comput. Methods Appl. Mech. Eng. 289, 60–78 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Wang, H., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for advection–diffusion problems. SIAM J. Numer. Anal. 53, 206–227 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Wang, H., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for nonlinear convection–diffusion problems. Appl. Math. Comput. 272, 237–258 (2016)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–97 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Xia, Y., Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the Cahn–Hilliard type equations. J. Comput. Phys. 227, 472–491 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17, 27–47 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Zhang, Q., Shu, C.-W.: Error estimates to smooth solution of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimate to the third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48, 1038–1063 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Physics and Applied MathematicsColumbia UniversityNew YorkUSA
  2. 2.Department of MathematicsUniversity of South CarolinaColumbiaUSA
  3. 3.School of Mathematical SciencesOcean University of ChinaQingdaoChina
  4. 4.Applied and Computational Mathematics DivisionBeijing Computational Science and Research CenterBeijingChina
  5. 5.South China Research Center for Applied Mathematics and Interdisciplinary StudiesSouth China Normal UniversityGuangzhouChina

Personalised recommendations