Advertisement

The Gradient Flow Structure of an Extended Maxwell Viscoelastic Model and a Structure-Preserving Finite Element Scheme

  • Masato Kimura
  • Hirofumi Notsu
  • Yoshimi Tanaka
  • Hiroki Yamamoto
Article
  • 20 Downloads

Abstract

An extended Maxwell viscoelastic model with a relaxation parameter is studied from mathematical and numerical points of view. It is shown that the model has a gradient flow property with respect to a viscoelastic energy. Based on the gradient flow structure, a structure-preserving time-discrete model is proposed and existence of a unique solution is proved. Moreover, a structure-preserving P1/P0 finite element scheme is presented and its stability in the sense of energy is shown by using its discrete gradient flow structure. As typical viscoelastic phenomena, two-dimensional numerical examples by the proposed scheme for a creep deformation and a stress relaxation are shown and the effects of the relaxation parameter are investigated.

Keywords

Gradient flow structure Maxwell viscoelastic model Finite element method Structure preserving scheme 

Notes

Acknowledgements

This work is partially supported by JSPS KAKENHI Grant Numbers JP16H02155, JP17H02857, JP26800091, JP16K13779, JP18H01135, and JP17K05609, JSPS A3 Foresight Program, and JST PRESTO Grant Number JPMJPR16EA.

References

  1. 1.
    Abuzeid, O.M., Eberhard, P.: Linear viscoelastic creep model for the contact of nominal flat surfaces based on fractal geometry: standard linear solid (SLS) material. J. Tribol. 129, 461–466 (2007)CrossRefGoogle Scholar
  2. 2.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  3. 3.
    Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1970)Google Scholar
  4. 4.
    Golden, J.M., Graham, G.A.C.: Boundary Value Problems in Linear Viscoelasticity. Springer, Berlin (1988)CrossRefzbMATHGoogle Scholar
  5. 5.
    Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Karamanou, M., Shaw, S., Warby, M.K., Whiteman, J.R.: Models, algorithms and error estimation for computational viscoelasticity. Comput. Methods Appl. Mech. Eng. 194(2–5), 245–265 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kimura, M., Notsu, H., Tanaka, Y., Yamamoto, H.: In preparationGoogle Scholar
  8. 8.
    Lockett, F.J.: Nonlinear Viscoelastic Solids. Academic Press, Paris (1972)zbMATHGoogle Scholar
  9. 9.
    Macosko, C.W.: Rheology: Principles, Measurements, and Applications. Wiley-VCH, New York (1994)Google Scholar
  10. 10.
    Nečas, J.: Les Méthods Directes en Théories des Équations Elliptiques. Masson, Paris (1967)zbMATHGoogle Scholar
  11. 11.
    Rivière, B., Shaw, S.: Discontinuous Galerkin finite element approximation of nonlinear non-Fickian diffusion in viscoelastic polymers. SIAM J. Numer. Anal. 44(6), 2650–2670 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rivière, B., Shaw, S., Wheeler, M.F., Whiteman, J.R.: Discontinuous galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity. Numerische Mathematik 95(2), 347–376 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rognes, M.E., Winther, R.: Mixed finite element methods for linear viscoelasticity using weak symmetry. Math. Models Methods Appl. Sci. 20, 955–985 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Schmidt, A., Siebert, K.G.: Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA. Springer, Berlin (2005)zbMATHGoogle Scholar
  15. 15.
    Shaw, S., Whiteman, J.R.: A posteriori error estimates for space-time finite element approximation of quasistatic hereditary linear viscoelasticity problems. Comput. Methods Appl. Mech. Eng. 193(52), 5551–5572 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsKanazawa UniversityKanazawaJapan
  2. 2.Japan Science and Technology Agency, PRESTOKawaguchiJapan
  3. 3.Department of Environment and System Sciences, Graduate School of Environment and Information SciencesYokohama National UniversityYokohamaJapan
  4. 4.Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaJapan

Personalised recommendations