Journal of Scientific Computing

, Volume 78, Issue 1, pp 582–606

# Numerical Computing of Preimage Domains for Bounded Multiply Connected Slit Domains

Article

## Abstract

In this paper, for a given bounded multiply connected slit domain $$\varOmega$$, we present an iterative numerical method for computing a conformally equivalent multiply connected domain G bounded by smooth Jordan curves and the conformal mapping $$w=\varPhi (z)$$ from G onto $$\varOmega$$. Each iteration of the proposed iterative method requires solving the boundary integral equation with the generalized Neumann kernel. We consider two cases of bounded slit domains, namely the unit disk with radial slit domain and an annulus with radial slit domain. Numerical examples are presented to illustrate that the proposed iterative method converges even for highly connected slit domains.

## Keywords

Numerical conformal mapping Generalized Neumann kernel Multiply connected domains Canonical slit domains

## Mathematics Subject Classification

30C30 45B05 65E05

## References

1. 1.
Amano, K.: A charge simulation method for numerical conformal mapping onto circular and radial slit domains. SIAM J. Sci. Comput. 19, 1169–1187 (1998)
2. 2.
Aoyama, N., Sakajo, T., Tanaka, H.: A computational theory for spiral point vortices in multiply connected domains with slit boundaries. Jpn. J. Ind. Appl. Math. 30, 485–509 (2013)
3. 3.
Atkinson, K.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)
4. 4.
Benchama, N., DeLillo, T., Hrycak, T., Wang, L.: A simplified Fornberg-like method for the conformal mapping of multiply connected regions-comparisons and crowding. J. Comput. Appl. Math. 209, 1–21 (2007)
5. 5.
Bourchtein, L.: Conformal mappings of multiply connected domains onto canonical domains using the Green and Neumann functions. Complex Var. Elliptic Equ. 58(6), 821–836 (2013)
6. 6.
Crowdy, D.: Analytical solutions for uniform potential flow past multiple cylinders. Eur. J. Mech. B Fluids 25, 459–470 (2006)
7. 7.
Crowdy, D.: Calculating the lift on a finite stack of cylindrical aerofoils. Proc. R. Soc. A 462, 1387–1407 (2006)
8. 8.
Crowdy, D.: Explicit solution for the potential flow due to an assembly of stirrers in an inviscid fluid. J. Eng. Math. 62, 333–344 (2008)
9. 9.
Crowdy, D.: A new calculus for two-dimensional vortex dynamics. Theor. Comput. Fluid Dyn. 24, 9–24 (2010)
10. 10.
Crowdy, D.: Conformal slit maps in applied mathematics. ANZIAM J. 53, 171–189 (2012)
11. 11.
Crowdy, D., Kropf, E.H., Green, C.C., Nasser, M.: The Schottky–Klein prime function: a theoretical and computational tool for applications. IMA J. Appl. Math. 81, 589–628 (2016)
12. 12.
Crowdy, D., Marshall, J.: Conformal mappings between canonical multiply connected domains. Comput. Methods Funct. Theory 6(1), 59–76 (2006)
13. 13.
DeLillo, T.: The accuracy of numerical conformal mapping methods: a survey of examples and results. SIAM J. Numer. Anal. 31, 788–812 (1994)
14. 14.
DeLillo, T., Driscoll, T., Elcrat, A., Pfaltzgraff, J.: Radial and circular slit maps of unbounded multiply connected circle domains. Proc. R. Soc. A 464(2095), 1719–1737 (2008)
15. 15.
DeLillo, T., Elcrat, A.: A Fornberg-like conformal mapping method for slender regions. J. Comput. Appl. Math. 46, 49–64 (1993)
16. 16.
Goluzin, G.: Geometric Theory of Functions of a Complex Variable. Amer. Math. Soc., Rhode Island (1969)
17. 17.
Greengard, L., Gimbutas, Z.: FMMLIB2D: A MATLAB toolbox for fast multipole method in two dimensions. Version 1.2 (2012). http://www.cims.nyu.edu/cmcl/fmm2dlib/fmm2dlib.html. Accessed 1 Jan 2018
18. 18.
Gutknecht, M.: Numerical experiments on solving theodorsen’s integral equation for conformal maps with the fast fourier transform and various nonlinear iterative methods. SIAM J. Sci. Stat. Comput. 4(1), 1–30 (1983)
19. 19.
Henrici, P.: Applied and Computational Complex Analysis, vol. 3. Wiley, New York (1986)
20. 20.
Kerzman, N., Trummer, M.: Numerical conformal mapping via the Szegö kernel. J. Comput. Appl. Math. 14, 111–123 (1986)
21. 21.
Koebe, P.: Über die konforme Abbildung mehrfach-zusammenhängender Bereiche. Jahresber. Deut. Math. Ver. 19, 339–348 (1910)
22. 22.
Koebe, P.: Abhandlungen zur theorie der konformen abbildung, iv. abbildung mehrfach zusammenhängender schlichter bereiche auf schlitzbe-reiche. Acta Math. 41, 305–344 (1918)
23. 23.
Kress, R.: Linear Integral Equations, 3rd edn. Springer, New York (2014)
24. 24.
25. 25.
Nasser, M.M.S.: A boundary integral equation for conformal mapping of bounded multiply connected regions. Comput. Methods Funct. Theory 9, 127–143 (2009)
26. 26.
Nasser, M.M.S.: Numerical conformal mapping via a boundary integral equation with the generalized Neumann kernel. SIAM J. Sci. Comput. 31(3), 1695–1715 (2009)
27. 27.
Nasser, M.M.S.: Numerical conformal mapping of multiply connected regions onto the second, third and fourth categories of Koebe’s canonical slit domains. J. Math. Anal. Appl. 382, 47–56 (2011)
28. 28.
Nasser, M.M.S.: Numerical conformal mapping of multiply connected regions onto the fifth category of Koebe’s canonical slit regions. J. Math. Anal. Appl. 398, 729–743 (2013)
29. 29.
Nasser, M.M.S.: Fast computation of the circular map. Comput. Methods Funct. Theory 15(2), 187–223 (2015)
30. 30.
Nasser, M.M.S.: Fast solution of boundary integral equations with the generalized Neumann kernel. Electron. Trans. Numer. Anal. 44, 189–229 (2015)
31. 31.
Nasser, M.M.S.: CircularMap: A numerical implementation of the circular map in MATLAB (2017). https://github.com/mmsnasser/CircularMap. Accessed 1 Jan 2018
32. 32.
Nasser, M.M.S., Al-Shihri, F.: A fast boundary integral equation method for conformal mapping of multiply connected regions. SIAM J. Sci. Comput. 35(3), A1736–A1760 (2013)
33. 33.
Nasser, M.M.S., Green, C.C.: A fast numerical method for ideal fluid flow in domains with multiple stirrers. Nonlinearity 31, 815–837 (2018)
34. 34.
Okano, D., Ogata, H., Amano, K.: A method of numerical conformal mapping of curved slit domains by the charge simulation method. J. Comput. Appl. Math. 152, 441–450 (2003)
35. 35.
Pommerenke, C.: On the logarithmic capacity and conformal mapping. Duke Math. J. 35, 321–325 (1968)
36. 36.
Razali, M., Nashed, M., Murid, A.: Numerical conformal mapping via the Bergman kernel. J. Comput. Appl. Math. 82, 335–350 (1997)
37. 37.
Sangawi, A., Murid, A.H.M., Nasser, M.M.S.: Radial slit maps of bounded multiply connected regions. J. Sci. Comput. 55, 309–326 (2013)
38. 38.
Schiffer, M.: Some recent developments in the theory of conformal mapping. In: Appendix to: R. Courant, Dirichlet’s principle, conformal mapping and minimal surfaces. Interscience, New York (1950)Google Scholar
39. 39.
Trummer, M.: An efficient implementation of a conformal mapping method based on the Szegö kernel. SIAM J. Numer. Anal. 23(4), 853–872 (1986)
40. 40.
Wegmann, R.: Crowding for analytic functions with elongated range. Constr. Approx. 10, 179–186 (1994)
41. 41.
Wegmann, R.: Methods for numerical conformal mapping. In: Kühnau, R. (ed.) Handbook of Complex Analysis: Geometric Function Theory, vol. 2, pp. 351–477. Elsevier, New York (2005)
42. 42.
Wegmann, R., Nasser, M.M.S.: The Riemann–Hilbert problem and the generalized Neumann kernel on multiply connected regions. J. Comput. Appl. Math. 214, 36–57 (2008)
43. 43.
Yunus, A., Murid, A.H.M., Nasser, M.M.S.: Numerical conformal mapping and its inverse of unbounded multiply connected regions onto logarithmic spiral slit regions and rectilinear slit regions. Proc. R. Soc. A. 470(2162), 514 (2014)