Advertisement

Journal of Scientific Computing

, Volume 77, Issue 2, pp 950–970 | Cite as

Limited Memory Block Preconditioners for Fast Solution of Fractional Partial Differential Equations

  • Daniele BertacciniEmail author
  • Fabio Durastante
Article

Abstract

An innovative block structured with sparse blocks multi iterative preconditioner for linear multistep formulas used in boundary value form is proposed here to accelerate GMRES, FGMRES and BiCGstab(l). The preconditioner is based on block \(\omega \)-circulant matrices and a short-memory approximation of the underlying Jacobian matrix of the fractional partial differential equations. Convergence results, numerical tests and comparisons with other techniques confirm the effectiveness of the approach.

Keywords

Preconditioners Fractional calculus Krylov iterative methods 

Mathematics Subject Classification

65F08 65M22 35R11 

Notes

Acknowledgements

We wish to thank two anonymous referees for their constructive comments which have improved the readability of the paper.

References

  1. 1.
    Axelsson, A., Verwer, J.: Boundary value techniques for initial value problems in ordinary differential equations. Math. Comp. 45, 153–171 (1985)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bertaccini, D.: P-Circulant Preconditioners and the Systems of the ODE Codes, IMACS Series in Computational and Applied Mathematics, vol. 5, pp. 179–193. IMACS, New Brunswick (1999)Google Scholar
  3. 3.
    Bertaccini, D.: A circulant preconditioner for the systems of LMF-based ODE codes. SIAM J. Sci. Comput. 22(3), 767–786 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bertaccini, D.: Reliable preconditioned iterative linear solvers for some numerical integrators. Numer. Linear Algebra Appl. 8(2), 111–125 (2001)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bertaccini, D.: The spectrum of circulant-like preconditioners for some general linear multistep formulas for linear boundary value problems. SIAM J. Numer. Anal. 40(5), 1798–1822 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bertaccini, D., Durastante, F.: Solving mixed classical and fractional partial differential equations using short-memory principle and approximate inverses. Numer. Algorithms 74(4), 1061–1082 (2017).  https://doi.org/10.1007/s11075-016-0186-8 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bertaccini, D., Durastante, F.: Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications, Monographs and Research Notes in Mathematics. CRC Press, Chapman & Hall/CRC, London (2018)zbMATHGoogle Scholar
  8. 8.
    Bertaccini, D., Ng, M.K.: Skew–circulant preconditioners for systems of LMF–based ODE codes. In: International Conference on Numerical Analysis and Its Applications, pp. 93–101. Springer (2000)Google Scholar
  9. 9.
    Bertaccini, D., Ng, M.K.: The convergence rate of block preconditioned systems arising from LMF-based ode codes. BIT 41(3), 433–450 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bertaccini, D., Ng, M.K.: Band-Toeplitz preconditioned GMRES iterations for time-dependent PDEs. BIT 43(5), 901–914 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bertaccini, D., Ng, M.K.: Block \(\{\omega \}\)-circulant preconditioners for the systems of differential equations. Calcolo 40(2), 71–90 (2003)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Brugnano, L., Trigiante, D.: Solving Differential Equations by Multistep Initial and Boundary Value Methods. Stability and Control: Theory, Methods and Applications. Taylor & Francis, London (1998)zbMATHGoogle Scholar
  13. 13.
    Chan, R., Ng, M., Jin, X.Q.: Strang-type preconditioner for systems of LMF-based ODE codes. IMA J. Numer. Anal. 21(2), 451–62 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comp. Phys. 307, 262–279 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fischer, R., Huckle, T.: Using \(\omega \)-circulant matrices for the preconditioning of toeplitz systems. Selçuk J. Appl. Math 4, 71–88 (2003)zbMATHGoogle Scholar
  16. 16.
    Garoni, C., Serra-Capizzano, S.: Generalized Locally Toeplitz Sequences: Theory and Applications, 1st edn. Springer, New York (2017)CrossRefGoogle Scholar
  17. 17.
    Gu, X.M., Huang, T.Z., Ji, C.C., Carpentieri, B., Alikhanov, A.A.: Fast iterative method with a second-order implicit difference scheme for time-space fractional convection–diffusion equation. J. Sci. Comput. 72(3), 957–985 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gu, X.M., Huang, T.Z., Zhao, X.L., Li, H.B., Li, L.: Strang-type preconditioners for solving fractional diffusion equations by boundary value methods. J. Comput. Appl. Math. 277, 73–86 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hanke, M., Nagy, J.G.: Toeplitz approximate inverse preconditioner for banded Toeplitz matrices. Numer. Algorithms 7(2), 183–199 (1994).  https://doi.org/10.1007/BF02140682 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. Numerical Analysis and Scientific Computing Series. CRC Press, Chapman & Hall/CRC, London (2015)CrossRefGoogle Scholar
  21. 21.
    Lin, F.R., Yang, S.W., Jin, X.Q.: Preconditioned iterative methods for fractional diffusion equation. J. Comp. Phys. 256, 109–117 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1), 80–90 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ng, M.K.: Iterative Methods for Toeplitz Systems. Oxford University Press, Oxford (2004)zbMATHGoogle Scholar
  25. 25.
    Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. (2006). https://doi.org/10.1155/IJMMS/2006/48391 MathSciNetCrossRefGoogle Scholar
  26. 26.
    Pang, H.K., Sun, H.W.: Fast numerical contour integral method for fractional diffusion equations. J. Sci. Comput. 66(1), 41–66 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic Press, New York (1998)zbMATHGoogle Scholar
  28. 28.
    Popolizio, M.: A matrix approach for partial differential equations with riesz space fractional derivatives. Eur. Phys. J. Spec. Top. 222(8), 1975–1985 (2013)CrossRefGoogle Scholar
  29. 29.
    Saad, Y.: A flexible inner–outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14(2), 461–469 (1993)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)CrossRefGoogle Scholar
  31. 31.
    Saad, Y., Schultz, M.H.: Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Sleijpen, G.L., Fokkema, D.R.: BiCGstab(l) for linear equations involving unsymmetric matrices with complex spectrum. Electron. Trans. Numer. Anal. 1(11), 2000 (1993)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Sonneveld, P., Van Gijzen, M.B.: IDR(s): a family of simple and fast algorithms for solving large nonsymmetric systems of linear equations. SIAM J. Sci. Comput. 31(2), 1035–1062 (2008)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Van der Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems, vol. 13. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  36. 36.
    Wang, H., Wang, K.: An \(o(n \log ^2 n)\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comp. Phys. 230(21), 7830–7839 (2011)CrossRefGoogle Scholar
  37. 37.
    Wang, H., Wang, K., Sircar, T.: A direct \(o(n \log ^2 n)\) finite difference method for fractional diffusion equations. J. Comp. Phys. 229(21), 8095–8104 (2010)CrossRefGoogle Scholar
  38. 38.
    Zhang, L., Sun, H.W., Pang, H.K.: Fast numerical solution for fractional diffusion equations by exponential quadrature rule. J. Comp. Phys. 299, 130–143 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomeItaly
  2. 2.Istituto per le Applicazioni del Calcolo (IAC) “M. Picone”National Research Council (CNR)RomeItaly
  3. 3.Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations