Journal of Scientific Computing

, Volume 77, Issue 1, pp 283–307 | Cite as

A Stable Fast Time-Stepping Method for Fractional Integral and Derivative Operators

  • Fanhai Zeng
  • Ian Turner
  • Kevin Burrage


A unified fast time-stepping method for both fractional integral and derivative operators is proposed. The fractional operator is decomposed into a local part with memory length \(\varDelta T\) and a history part, where the local part is approximated by the direct convolution method and the history part is approximated by a fast memory-saving method. The fast method has \(O(n_0+\sum _{\ell }^L{q}_{\alpha }(N_{\ell }))\) active memory and \(O(n_0n_T+ (n_T-n_0)\sum _{\ell }^L{q}_{\alpha }(N_{\ell }))\) operations, where \(L=\log (n_T-n_0)\), \(n_0={\varDelta T}/\tau ,n_T=T/\tau \), \(\tau \) is the stepsize, T is the final time, and \({q}_{\alpha }{(N_{\ell })}\) is the number of quadrature points used in the truncated Laguerre–Gauss (LG) quadrature. The error bound of the present fast method is analyzed. It is shown that the error from the truncated LG quadrature is independent of the stepsize, and can be made arbitrarily small by choosing suitable parameters that are given explicitly. Numerical examples are presented to verify the effectiveness of the current fast method.


Fast convolution The (truncated) Laguerre–Gauss quadrature Short memory principle Fractional differential equations Fractional Lorenz system 



The authors are very grateful to the anonymous referees for the careful reading of a preliminary version of the manuscript and their valuable suggestions and comments, which greatly improve the quality of this paper.


  1. 1.
    Baffet, D., Hesthaven, J.S.: High-order accurate adaptive kernel compression time-stepping schemes for fractional differential equations. J. Sci. Comput. 72(3), 1169–1195 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Baffet, D., Hesthaven, J.S.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55(2), 496–520 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Banjai, L., López-Fernández, M., Schädle, A.: Fast and oblivious algorithms for dissipative and two-dimensional wave equations. SIAM J. Numer. Anal. 55(2), 621–639 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Beylkin, G., Monzn, L.: Approximation by exponential sums revisited. Appl. Comput. Harmon. Anal. 28(2), 131–149 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    D’Amore, L., Murli, A., Rizzardi, M.: An extension of the Henrici formula for Laplace transform inversion. Inverse Probl. 16(5), 1441–1456 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Deng, W.: Short memory principle and a predictor–corrector approach for fractional differential equations. J. Comput. Appl. Math. 206(1), 174–188 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Diethelm, K.: Generalized compound quadrature formulae for finite-part integrals. IMA J. Numer. Anal. 17(3), 479–493 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)zbMATHCrossRefGoogle Scholar
  9. 9.
    Diethelm, K., Ford, J.M., Ford, N.J., Weilbeer, M.: Pitfalls in fast numerical solvers for fractional differential equations. J. Comput. Appl. Math. 186(2), 482–503 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ford, N.J., Simpson, A.C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26(4), 333–346 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Galeone, L., Garrappa, R.: Fractional Adams–Moulton methods. Math. Comput. Simul. 79(4), 1358–1367 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gatteschi, L.: Asymptotics and bounds for the zeros of laguerre polynomials: a survey. J. Comput. Appl. Math. 144(1), 7–27 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain. Comput. Math. Appl. 64(10), 3377–3388 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. Chapman & Hall/CRC Numerical Analysis and Scientific Computing. CRC Press, Boca Raton (2015)Google Scholar
  18. 18.
    Li, J.R.: A fast time stepping method for evaluating fractional integrals. SIAM J. Sci. Comput. 31(6), 4696–4714 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Li, Z., Liang, Z., Yan, Y.: High-order numerical methods for solving time fractional partial differential equations. J. Sci. Comput. 71(2), 785–803 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    López-Fernández, M., Lubich, C., Schädle, A.: Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30(2), 1015–1037 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Lubich, C., Schädle, A.: Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24(1), 161–182 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Luchko, Y.: Initial-boundary problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374(2), 538–548 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2699–A2724 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Mastroianni, G., Monegato, G.: Truncated quadrature rules over \((0,\infty )\) and Nyström-type methods. SIAM J. Numer. Anal. 41, 1870–1892 (2006)zbMATHGoogle Scholar
  26. 26.
    Mastroianni, G., Monegato, G.: Some new applications of truncated Gauss–Laguerre quadrature formulas. Numer. Algorithms 49, 283–297 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    McLean, W.: Fast summation by interval clustering for an evolution equation with memory. SIAM J. Sci. Comput. 34(6), A3039–A3056 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    McLean, W.: Exponential sum approximations for \(t^{-\beta }\) p. arXiv:1606.00123 (2016)
  29. 29.
    McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105(3), 481–510 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 77 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Podlubny, I.: Fractional differential equations. Academic Press Inc, San Diego (1999)zbMATHGoogle Scholar
  32. 32.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993)zbMATHGoogle Scholar
  33. 33.
    Schädle, A., López-Fernández, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28(2), 421–438 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Shen, J., Tang, T., Wang, L.L.: Spectral Methods, Springer Series in Computational Mathematics, vol. 41. Springer, Heidelberg (2011)Google Scholar
  35. 35.
    Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Sun, Zz, Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math 56(2), 193–209 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Wang, C.L., Wang, Z.Q., Jia, H.L.: An hp-version spectral collocation method for nonlinear Volterra integro-differential equation with weakly singular kernels. J. Sci. Comput. 72, 647–678 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Wang, D., Xiao, A.: Dissipativity and contractivity for fractional-order systems. Nonlinear Dyn. 80(1), 287–294 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Weideman, J.A.C.: Optimizing talbots contours for the inversion of the laplace transform. SIAM J. Numer. Anal. 44(6), 2342–2362 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Weideman, J.A.C., Trefethen, L.N.: Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comput. 76(259), 1341–1356 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Xiang, S.: Asymptotics on Laguerre or Hermite polynomial expansions and their applications in Gauss quadrature. J. Math. Anal. Appl. 393(2), 434–444 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Yan, Y., Sun, Z.Z., Zhang, J.: Fast evaluation of the caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22(4), 1028–1048 (2017)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Yu, Y., Perdikaris, P., Karniadakis, G.E.: Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms. J. Comput. Phys. 323, 219–242 (2016)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Zayernouri, M., Matzavinos, A.: Fractional Adams-Bashforth/Moulton methods: an application to the fractional Keller–Segel chemotaxis system. J. Comput. Phys. 317, 1–14 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Zeng, F., Zhang, Z., Karniadakis, G.E.: Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput. Phys. 307, 15–33 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Zeng, F., Zhang, Z., Karniadakis, G.E.: Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions. Comput. Methods Appl. Mech. Eng. 327, 478–502 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesQueensland University of TechnologyBrisbaneAustralia
  2. 2.Australian Research Council Centre of Excellence for Mathematical and Statistical FrontiersQueensland University of TechnologyBrisbaneAustralia
  3. 3.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations