Journal of Scientific Computing

, Volume 77, Issue 1, pp 204–224 | Cite as

Optimization with Respect to Order in a Fractional Diffusion Model: Analysis, Approximation and Algorithmic Aspects

  • Harbir Antil
  • Enrique Otárola
  • Abner J. SalgadoEmail author


We consider an identification (inverse) problem, where the state \({\mathsf {u}}\) is governed by a fractional elliptic equation and the unknown variable corresponds to the order \(s \in (0,1)\) of the underlying operator. We study the existence of an optimal pair \(({\bar{s}}, {{\bar{{\mathsf {u}}}}})\) and provide sufficient conditions for its local uniqueness. We develop semi-discrete and fully discrete algorithms to approximate the solutions to our identification problem and provide a convergence analysis. We present numerical illustrations that confirm and extend our theory.


Optimal control problems Identification (inverse) problems Fractional diffusion Bisection algorithm Finite elements Stability Fully-discrete methods Convergence 

Mathematics Subject Classification

26A33 35J70 49J20 49K21 49M25 65M12 65M15 65M60 


  1. 1.
    Adams, R.: Sobolev Spaces, Pure and Applied Mathematics, vol. 65. Academic Press [A Subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1975)Google Scholar
  2. 2.
    Antil, H., Otárola, E.: A FEM for an optimal control problem of fractional powers of elliptic operators. SIAM J. Control Optim. 53(6), 3432–3456 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224(5), 2052–2093 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007). MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Caffarelli, L., Stinga, P.: Fractional elliptic equations, Caccioppoli estimates and regularity. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(3), 767–807 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Capella, A., Dávila, J., Dupaigne, L., Sire, Y.: Regularity of radial extremal solutions for some non-local semilinear equations. Commun. Partial Differ. Equ. 36(8), 1353–1384 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, L.: iFEM: an integrated finite element methods package in MATLAB. Technical Report, University of California at Irvine, Tech. rep. (2009)Google Scholar
  8. 8.
    Deckelnick, K., Hinze, M.: Convergence and error analysis of a numerical method for the identification of matrix parameters in elliptic PDEs. Inverse Probl. 28(11), 115015 (2012). MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Nochetto, R., Otárola, E., Salgado, A.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2015). MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Nochetto, R., Otárola, E., Salgado, A.: A PDE approach to space–time fractional parabolic problems. SIAM J. Numer. Anal. 54(2), 848–873 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Otárola, E.: A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains. ESAIM Math. Model. Numer. Anal. 51(4), 1473–1500 (2017). MathSciNetzbMATHGoogle Scholar
  12. 12.
    Sprekels, J., Valdinoci, E.: A new type of identification problems: optimizing the fractional order in a nonlocal evolution equation. SIAM J. Control Optim. 55(1), 70–93 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Stinga, P., Torrea, J.: Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35(11), 2092–2122 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Tröltzsch, F.: Optimal Control of Partial Differential Equations, Graduate Studies in Mathematics, Theory, Methods and Applications, vol. 112. American Mathematical Society, Providence, RI (2010). (Translated from the 2005 German original by Jürgen Sprekels)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Harbir Antil
    • 1
  • Enrique Otárola
    • 2
  • Abner J. Salgado
    • 3
    Email author
  1. 1.Department of Mathematical SciencesGeorge Mason UniversityFairfaxUSA
  2. 2.Departamento de MatemáticaUniversidad Técnica Federico Santa MaríaValparaisoChile
  3. 3.Department of MathematicsUniversity of TennesseeKnoxvilleUSA

Personalised recommendations