Journal of Scientific Computing

, Volume 76, Issue 3, pp 1484–1501

# A Hybridizable Discontinuous Galerkin Method for the Navier–Stokes Equations with Pointwise Divergence-Free Velocity Field

Article

## Abstract

We introduce a hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations for which the approximate velocity field is pointwise divergence-free. The method builds on the method presented by Labeur and Wells (SIAM J Sci Comput 34(2):A889–A913, 2012). We show that with modifications of the function spaces in the method of Labeur and Wells it is possible to formulate a simple method with pointwise divergence-free velocity fields which is momentum conserving, energy stable, and pressure-robust. Theoretical results are supported by two- and three-dimensional numerical examples and for different orders of polynomial approximation.

## Keywords

Navier–Stokes equations Hybridized methods Discontinuous Galerkin Finite element methods Solenoidal

## References

1. 1.
Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier–Stokes equations. J Comput Phys 218(2), 794–815 (2006).
2. 2.
Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer series in computational mathematics, vol. 44. Springer, Berlin (2013)
3. 3.
Carrero, J., Cockburn, B., Schötzau, D.: Hybridized globally divergence-free LDG methods. Part I: the Stokes problem. Math Comput 75(254), 533 (2005).
4. 4.
Cesmelioglu, A., Cockburn, B., Qiu, W.: Analysis of a hybridizable discontinuous Galerkin method for the steady-state incompressible Navier–Stokes equations. Math Comput 86, 1643 (2016).
5. 5.
Cockburn, B., Gopalakrishnan, J.: Incompressible finite elements via hybridization. Part I: the Stokes system in two space dimensions. SIAM J Numer Anal 43(4), 1627–1650 (2005).
6. 6.
Cockburn, B., Gopalakrishnan, J.: Incompressible finite elements via hybridization. Part II: the Stokes system in three space dimensions. SIAM J Numer Anal 43(4), 1651–1672 (2005).
7. 7.
Cockburn, B., Gopalakrishnan, J.: The derivation of hybridizable discontinuous Galerkin methods for Stokes equations. SIAM J Numer Anal 47(2), 1092–1125 (2009).
8. 8.
Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math Comput 74(251), 1067–1095 (2004).
9. 9.
Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J Numer Anal 47(2), 1319–1365 (2009).
10. 10.
Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.J.: Analysis of HDG methods for Stokes flow. Math Comput 80(274), 723–760 (2011).
11. 11.
Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et applications, vol. 69. Springer, Berlin (2012)
12. 12.
Ferrer, E., Willden, R.H.J.: A high order discontinuous Galerkin finite element solver for the incompressible Navier-Stokes equations. Comput Fluids 46, 224–240 (2011).
13. 13.
Hughes, T.J.R., Wells, G.N.: Conservation properties for the Galerkin and stabilised forms of the advection–diffusion and incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 194(9–11), 1141–1159 (2005).
14. 14.
John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev 59(3), 492–544 (2017).
15. 15.
Kovasznay, L.I.G.: Laminar flow behind a two-dimensional grid. Proc Camb Philos Soc 44, 58–62 (1948).
16. 16.
Labeur, R.J., Wells, G.N.: A Galerkin interface stabilisation method for the advection–diffusion and incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 196(49–52), 4985–5000 (2007).
17. 17.
Labeur, R.J., Wells, G.N.: Energy stable and momentum conserving hybrid finite element method for the incompressible Navier–Stokes equations. SIAM J Sci Comput 34(2), A889–A913 (2012).
18. 18.
Lederer, P., Linke, A., Merdon, C., Schöberl, J.: Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements. SIAM J Numer Anal 55, 1291–1314 (2017).
19. 19.
Lehrenfeld, C., Schöberl, J.: High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows. Comput Methods Appl Mech Eng 307, 339–361 (2016).
20. 20.
Linke, A., Merdon, C.: On velocity errors due to irrotational forces in the Navier-Stokes momentum balance. J Comput Phys 313, 654–661 (2016).
21. 21.
Linke, A., Merdon, C.: Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 311, 304 (2016).
22. 22.
Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput Methods Appl Mech Eng 199(9–12), 582–597 (2010).
23. 23.
Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J Comput Phys 230(4), 1147–1170 (2011).
24. 24.
Qiu, W., Shi, K.: A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes. IMA J Numer Anal 36(4), 1943–1967 (2016).
25. 25.
Rhebergen, S., Cockburn, B.: A space–time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. J Comput Phys 231(11), 4185–4204 (2012).
26. 26.
Rhebergen, S., Wells, G.N.: Analysis of a hybridized/interface stabilized finite element method for the Stokes equations. SIAM J Numer Anal 55(4), 1982–2003 (2017).
27. 27.
Rhebergen S., Wells, G.N.: Preconditioning of a hybridized discontinuous Galerkin finite element method for the Stokes equations (2018). arXiv:1801.04707
28. 28.
Rhebergen, S., Cockburn, B., van der Vegt, J.J.W.: A space–time discontinuous Galerkin method for the incompressible Navier–Stokes equations. J Comput Phys 233(15), 339–358 (2013).
29. 29.
Schäfer, M., Turek, S., Durst, F., Krause, E., Rannacher, R.: Benchmark computations of laminar flow around a cylinder. In: Hirschel, E.H. (ed.) Flow Simulation with High-Performance Computers II, pp. 547–566. Vieweg+Teubner Verlag, Halle (1996)
30. 30.
Schöberl, J.: C++11 implementation of finite elements in NGSolve. Technical Report, ASC Report 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology (2014). http://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/ngs-cpp11.pdf. Accessed 1 Sept 2016
31. 31.
Shahbazi, K., Fischer, P.F., Ethier, C.R.: A high-order discontinuous Galerkin method for the unsteady incompressible Navier–Stokes equations. J Comput Phys 222(1), 391–407 (2007).
32. 32.
Wells, G.N.: Analysis of an interface stabilized finite element method: the advection–diffusion–reaction equation. SIAM J Numer Anal 49(1), 87–109 (2011).