Advertisement

Journal of Scientific Computing

, Volume 76, Issue 2, pp 969–1006 | Cite as

Arbitrary High-Order Explicit Hybridizable Discontinuous Galerkin Methods for the Acoustic Wave Equation

  • Svenja SchoederEmail author
  • Martin Kronbichler
  • Wolfgang A. Wall
Article

Abstract

We propose a new formulation of explicit time integration for the hybridizable discontinuous Galerkin (HDG) method in the context of the acoustic wave equation based on the arbitrary derivative approach. The method is of arbitrary high order in space and time without restrictions such as the Butcher barrier for Runge–Kutta methods. To maintain the superconvergence property characteristic for HDG spatial discretizations, a special reconstruction step is developed, which is complemented by an adjoint consistency analysis. For a given time step size, this new method is twice as fast compared to a low-storage Runge–Kutta scheme of order four with five stages at polynomial degrees between two and four. Several numerical examples are performed to demonstrate the convergence properties, reveal dispersion and dissipation errors, and show solution behavior in the presence of material discontinuities. Also, we present the combination of local time stepping with h-adaptivity on three-dimensional meshes with curved elements.

Keywords

Hybridizable discontinuous Galerkin methods Arbitrary high-order Local time stepping Superconvergence Adjoint consistency Acoustics 

Mathematics Subject Classification

65M12 65M60 

Notes

Acknowledgements

The authors acknowledge support by the German Research Foundation (DFG) through the project “High-order discontinuous Galerkin for the exa-scale” (ExaDG) within the priority program “Software for Exascale Computing” (SPPEXA), Grant Agreement Nos. KR4661/2-1 and WA1521/18-1.

References

  1. 1.
    Cohen, G.C.: Higher-Order Numerical Methods for Transient Wave Equations. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Hesthaven, J.S. Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Application, Vol. 54 of Texts in Applied Mathematics, Springer, Berlin (2008)Google Scholar
  3. 3.
    Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic equations. SIAM J. Numer. Anal. 47(2), 1139–1365 (2009).  https://doi.org/10.1137/070706616 zbMATHGoogle Scholar
  4. 4.
    Nguyen, N.C., Peraire, J., Cockburn, B.: High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. J. Comput. Phys. 230, 3695–3718 (2011).  https://doi.org/10.1016/j.jcp.2011.01.035 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cockburn, B., Qiu, W., Shi, K.: Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comput. 81(279), 1327–1353 (2011).  https://doi.org/10.1090/S0025-5718-2011-02550-0 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cockburn, B., Quenneville-Belair, V.: Uniform-in-time superconvergence of the HDG methods for the acoustic wave equation. Math. Comput. 83(285), 65–85 (2013).  https://doi.org/10.1090/S0025-5718-2013-02743-3 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kronbichler, M., Schoeder, S., Müller, C., Wall, W.: Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation. Int. J. Numer. Methods Eng. 106(9), 712–739 (2016).  https://doi.org/10.1002/nme.5137 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Stanglmeier, M., Nguyen, N., Peraire, J., Cockburn, B.: An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation. Comput. Methods Appl. Mech. Eng. 300, 748–769 (2016).  https://doi.org/10.1016/j.cma.2015.12.003 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kronbichler, M., Kormann, K.: A generic interface for parallel cell-based finite element operator application. Comput. Fluids 63, 135–147 (2012).  https://doi.org/10.1016/j.compfluid.2012.04.012 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Orszag, S.A.: Spectral methods for problems in complex geometries. J. Comput. Phys. 37, 70–92 (1980).  https://doi.org/10.1016/0021-9991(80)90005-4 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Springer, New York (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Schwartzkopff, T., Munz, C.D., Toro, E.F.: ADER: A high-order approach for linear hyperbolic systems in 2D. J. Sci. Comput. 17(1), 231–240 (2002).  https://doi.org/10.1023/A:1015160900410 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Schwartzkopff, T., Dumbser, M., Munz, C.-D.: Fast high order ADER schemes for linear hyperbolic equations. J. Comput. Phys. 197, 532–539 (2004).  https://doi.org/10.1016/j.jcp.2003.12.007 CrossRefzbMATHGoogle Scholar
  14. 14.
    Dumbser, M., Käser, M.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—II. The three-dimensional isotropic case. Geophys. J. Int. 167, 319–336 (2006).  https://doi.org/10.1111/j.1365-246X.2006.03120.x CrossRefGoogle Scholar
  15. 15.
    Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids. J. Comput. Phys. 314, 824–862 (2016).  https://doi.org/10.1016/j.jcp.2016.02.015 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dumbser, M., Schwartzkopff, T., Munz, C.-D.: Arbitrary high order finite volume schemes for linear wave propagation. In: Krause, E., Shokin, Y., Resch, M., Shokina, N. (eds.) Computational Science and High Performance Computing II: The 2nd Russian-German Advanced Research Workshop, Stuttgart, Germany, March 14 to 16, 2005, pp. 129–144. Springer, Berlin (2006).  https://doi.org/10.1007/3-540-31768-6_11 CrossRefGoogle Scholar
  17. 17.
    Guo, W., Qiu, J.-M., Qiu, J.: A new Lax–Wendroff discontinuous Galerkin method with superconvergence. J. Sci. Comput. 65(1), 299–326 (2015).  https://doi.org/10.1007/s10915-014-9968-0 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Winters, A.R., Kopriva, D.A.: High-order local time stepping on moving DG spectral element meshes. J. Sci. Comput. 58(1), 176–202 (2014).  https://doi.org/10.1007/s10915-013-9730-z MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Piperno, S.: Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems. ESAIM Math. Model. Numer. Anal. 40(5), 815–841 (2005).  https://doi.org/10.1051/m2an:2006035 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gassner, G., Hindenlang, G., Munz, C.-D.: A Runge–Kutta based discontinuous Galerkin method with time accurate local time stepping. In: Wang, Z.J. (ed.) Adaptive High-Order Methods in Computational Fluid Dynamics, vol. 2, pp. 95–118. World Scientific Publishing Co. Pte. Ltd., Singapore (2011)Google Scholar
  21. 21.
    Grote, M., Mehlin, M., Mitkova, T.: Runge–Kutta-based explicit local time-stepping methods for wave propagation. SIAM J. Sci. Comput. 37(2), A747–A775 (2015).  https://doi.org/10.1137/140958293 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dumbser, M., Käser, M., Toro, E.F.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—V. Local time stepping and \(p\)-adaptivity. Geophys. J. Int. 171, 695–717 (2007).  https://doi.org/10.1111/j.1365-246X.2007.03427.x CrossRefGoogle Scholar
  23. 23.
    Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31, 629–651 (1977).  https://doi.org/10.1090/S0025-5718-1977-0436612-4 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35, 177–219 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kubatko, E.J., Yeager, B.A., Ketcheson, D.I.: Optimal strong-stability-preserving Runge–Kutta time discretizations for discontinuous Galerkin methods. J. Sci. Comput. 60, 313–344 (2014).  https://doi.org/10.1007/s10915-013-9796-7 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods. Wiley, New York (1987)zbMATHGoogle Scholar
  27. 27.
    Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100(1), 32–74 (1928).  https://doi.org/10.1007/BF01448839 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. Oxford University Press, Oxford (2005)CrossRefzbMATHGoogle Scholar
  29. 29.
    Krivodonova, L., Ruibin, Q.: An analysis of the spectrum of the discontinuous Galerkin method. Appl. Numer. Math. 64, 1–18 (2013).  https://doi.org/10.1016/j.apnum.2012.07.008 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Yakovlev, S., Moxey, D., Kirby, R., Sherwin, S.: To CG or to HDG: a comparative study in 3D. J. Sci. Comput. 67(1), 192–220 (2016).  https://doi.org/10.1007/s10915-015-0076-6 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Hartmann, R.: Adjoint consistency analysis of discontinuous Galerkin discretizations. SIAM J. Numer. Anal. 45(6), 2671–2696 (2007).  https://doi.org/10.1137/060665117 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Yang, H., Li, F., Qiu, J.: Dispersion and dissipation errors of two fully discrete discontinuous Galerkin methods. J. Sci. Comput. 55(3), 552–574 (2013).  https://doi.org/10.1007/s10915-012-9647-y MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Ainsworth, M.: Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods. J. Comput. Phys. 198, 106–130 (2004).  https://doi.org/10.1016/j.jcp.2004.01.004 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kanschat, G., Kronbichler, M., Maier, M., Turcksin, B., Wells, D.: The deal. II library, version 8.4.0. J. Numer. Math. 24(3), 135–141 (2016).  https://doi.org/10.1515/jnma-2016-1045 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Bangerth, W., Burstedde, C., Heister, T., Kronbichler, M.: Algorithms and data structures for massively parallel generic finite element codes. ACM Trans. Math. Softw. 38(2), 14:1–14:28 (2011). http://dx.doi.org/10.1145/2049673.2049678

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Computational MechanicsTechnical University of MunichGarching b. MünchenGermany

Personalised recommendations