Advertisement

Journal of Scientific Computing

, Volume 76, Issue 2, pp 913–942 | Cite as

A Fast Discontinuous Galerkin Method for a Bond-Based Linear Peridynamic Model Discretized on a Locally Refined Composite Mesh

  • Huan Liu
  • Aijie ChengEmail author
  • Hong WangEmail author
Article
  • 419 Downloads

Abstract

We develop a family of fast discontinuous Galerkin (DG) finite element methods for a bond-based linear peridynamic (PD) model in one space dimension. More precisely, we develop a preconditioned fast piecewise-constant DG scheme on a geometrically graded locally refined composite mesh which is suited for the scenario in which the jump discontinuity of the displacement field occurs at the one of the nodes in the original uniform partition. We also develop a preconditioned fast piecewise-linear DG scheme on a uniform mesh that has a second-order convergence rate when the jump discontinuity occurs at one of the computational nodes or has a convergence rate of one-half order otherwise. Motivated by these results, we develop a preconditioned fast hybrid DG scheme that is discretized on a locally uniformly refined composite mesh to numerically simulate the PD model where the jump discontinuity of the displacement field occurs inside a computational cell. We use a piecewise-constant DG scheme on a uniform mesh and a piecewise-linear DG scheme on a locally uniformly refined mesh of mesh size \(O(h^2)\), which has an overall convergence rate of O(h). Because of their nonlocal nature, numerical methods for PD models generate dense stiffness matrices which have \(O(N^2)\) memory requirement and \(O(N^3)\) computational complexity, where N is the number of computational nodes. In this paper, we explore the structure of the stiffness matrices to develop three preconditioned fast Krylov subspace iterative solvers for the DG method. Consequently, the methods have significantly reduced computational complexity and memory requirement. Numerical results show the utility of the numerical methods.

Keywords

Peridynamic model Discontinuous Galerkin finite element method Fast solution method Locally refined composite mesh 

Notes

Acknowledgements

The authors would like to express their sincere thanks to the editor and referees for their very helpful comments and suggestions, which greatly improved the quality of this paper. This work was supported in part by the OSD/ARO MURI Grant W911NF-15-1-0562, by the National Natural Science Foundation of China under Grants 11471194, 11571115, and 91630207, by the National Science Foundation under Grant DMS-1620194, by the National Science and Technology Major Project of China under Grants 2011ZX05052 and 2011ZX05011-004, and by Shandong Provincial Natural Science Foundation, China under Grant ZR2011AM015, and by Taishan Scholars Program of Shandong Province of China.

References

  1. 1.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. ELsevier, San Diego (2003)zbMATHGoogle Scholar
  2. 2.
    Bobaru, F., Yang, M., Alves, L., Silling, S., Askari, E., Xu, J.: Convergence, adaptive refinement, and scaling in 1D peridynamics. Int. J. Numer. Methods Eng. 77(6), 852–877 (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38, 427–482 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chan, T.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Stat. Comput. 9, 766–771 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, X., Gunzburger, M.: Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Methods Appl. Mech. Eng. 200, 1237–1250 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Davis, P.J.: Circulant Matrices. Wiley-Intersciences, New York (1979)zbMATHGoogle Scholar
  7. 7.
    Dayal, K., Bhattacharya, K.: Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids 54, 1811–1842 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Deng, W.: Finite element bethod for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    DeVore, R.A.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dörfler, W.: A convergent adaptive algorithm for Poissons equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996).  https://doi.org/10.1137/0733054 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Du, Q., Ju, L., Tian, L., Zhou, K.: A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models. Math. Comput. 82, 1889–1922 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Du, Q., Tian, L., Zhao, X.: A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models. SIAM J. Numer. Anal. 51(2), 1211–1234 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Emmrich, E., Weckner, O.: The peridynamic equation and its spatial discretisation. Math. Model. Anal. 12, 17–27 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gerstle, W., Sau, N., Silling, S.: Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237, 1250–1258 (2007)CrossRefGoogle Scholar
  15. 15.
    Ghajari, M., Iannucci, L., Curtis, P.: A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media. Comput. Methods Appl. Mech. Eng. 276, 431–452 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ha, Y.D., Bobaru, F.: Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78, 1156–1168 (2011)CrossRefGoogle Scholar
  17. 17.
    Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar
  18. 18.
    Jia, J., Wang, H.: A preconditioned fast finite volume scheme for a fractional differential equation discretized on a locally refined composite mesh. J. Comput. Phys. 299, 842–862 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lai, X., Ren, B., Fan, H., Li, S., Wu, C.T., Regueiro, R.A., Liu, L.: Peridynamics simulations of geomaterial fragmentation by impulse loads. Int. J. Numer. Anal. Meth. Geomech. 39, 1304–1330 (2015)CrossRefGoogle Scholar
  20. 20.
    Li, C., Ding, H.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38, 3802–3821 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lynch, V.E., Carreras, B.A., del-Castillo-Negrete, D., Ferreira-Mejias, K.M., Hicks, H.R.: Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192, 406–421 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mitchell, J.A.: A nonlocal, ordinary, state-based plasticity model for peridynamics. Sandia Report SAND 2011-3166, May 2011Google Scholar
  25. 25.
    Oterkus, E., Madenci, E., Weckner, O., Silling, S., Bogert, P.: Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot. Compos. Struct. 94, 839–850 (2012)CrossRefGoogle Scholar
  26. 26.
    Seleson, P., Du, Q., Parks, M.L.: On the consistency between nearest-neighbor peridynamic discretizations and discretized classical elasticity models. Comput. Methods Appl. Mech. Eng. 311, 698–722 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Seleson, P., Littlewood, D.: Convergence studies in meshfree peridynamic simulations. Comput. Math. Appl. 71, 2432–2448 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Seleson, P., Parks, M.L.: On the role of the infuence function in the peridynamic theory. Int. J. Multiscale Comput. Eng. 9, 689–706 (2011)CrossRefGoogle Scholar
  29. 29.
    Silling, S.: Reformulation of elasticity theory for discontinuous and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Silling, S., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)CrossRefGoogle Scholar
  31. 31.
    Silling, S., Epton, M., Wecker, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88, 151–184 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Silling, S., Weckner, O., Askari, E., Bobaru, F.: Crack nucleation in a peridynamic solid. Int. J. Fract. 162, 219–227 (2010)CrossRefzbMATHGoogle Scholar
  33. 33.
    Sun, S., Sundararaghavan, V.: A peridynamic implementation of crystal plasticity. Int. J. Solids Struct. 51, 3350–3360 (2014)CrossRefGoogle Scholar
  34. 34.
    Tian, X., Du, Q.: Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51, 3458–3482 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Tian, H., Wang, H., Wang, W.: An efficient collocation method for a non-local diffusion model. Int. J. Numer. Anal. Model. 10, 815–825 (2013)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Wang, C., Wang, H.: A fast collocation method for a variable-coefficient nonlocal diffusion model. J. Comput. Phys. 330, 114–126 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Wang, H., Tian, H.: A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model. J. Comput. Phys. 231, 7730–7738 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Wang, H., Tian, H.: A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion model. Comput. Methods Appl. Mech. Eng. 273, 19–36 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Xu, F., Gunzburger, M., Burkardt, J., Du, Q.: A multiscale implementation based on adaptive mesh refinement for the nonlocal peridynamics model in one dimension. Multiscale Model. Simul. 14(1), 398–429 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Xu, F., Gunzburger, M., Burkardt, J.: A multiscale method for nonlocal mechanics and diffusion and for the approximation of discontinuous functions. Comput. Method Appl. Mech. Eng. 307, 117–143 (2016)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Zhang, X., Wang, H.: A fast method for a steady-state bond-based peridynamic model. Comput. Methods Appl. Mech. Eng. 311, 280–303 (2016)CrossRefGoogle Scholar
  43. 43.
    Zhao, M., Cheng, A., Wang, H.: A preconditioned fast Hermite finite element method for space-fractional diffusion equations. Discrete Contin. Dyn. B 22(9), 3529–3545 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Zhou, K., Du, Q.: Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary condition. SIAM J. Numer. Anal. 48, 1759–1780 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsShandong UniversityJinanChina
  2. 2.Department of MathematicsUniversity of South CarolinaColumbiaUSA

Personalised recommendations