Advertisement

Error Boundedness of Discontinuous Galerkin Methods with Variable Coefficients

  • Philipp ÖffnerEmail author
  • Hendrik Ranocha
Article
  • 57 Downloads

Abstract

For practical applications, the long time behaviour of the error of numerical solutions to time-dependent partial differential equations is very important. Here, we investigate this topic in the context of hyperbolic conservation laws and flux reconstruction schemes, focusing on the schemes in the discontinuous Galerkin spectral element framework. For linear problems with constant coefficients, it is well-known in the literature that the choice of the numerical flux (e.g. central or upwind) and the selection of the polynomial basis (e.g. Gauß–Legendre or Gauß–Lobatto–Legendre) affects both the growth rate and the asymptotic value of the error. Here, we extend these investigations of the long time error to variable coefficients using both Gauß–Lobatto–Legendre and Gauß–Legendre nodes as well as several numerical fluxes. We derive conditions guaranteeing that the errors are still bounded in time. Furthermore, we analyse the error behaviour under these conditions and demonstrate in several numerical tests similarities to the case of constant coefficients. However, if these conditions are violated, the error shows a completely different behaviour. Indeed, by applying central numerical fluxes, the error increases without upper bound while upwind numerical fluxes can still result in uniformly bounded numerical errors. An explanation for this phenomenon is given, confirming our analytical investigations.

Keywords

Flux reconstruction Discontinuous Galerkin Summation-by-parts Error analysis Error bound Error growth 

Mathematics Subject Classification

65N15 65N12 65N35 65N30 65N06 

Notes

Acknowledgements

Philipp Öffner was supported by SNF Project (Number 175784) “Solving advection dominated problems with high order schemes with polygonal meshes: application to compressible and incompressible flow problems” and Hendrik Ranocha was supported by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) under Grant SO 363/14-1.

References

  1. 1.
    Abarbanel, S., Ditkowski, A., Gustafsson, B.: On error bounds of finite difference approximations to partial differential equations–temporal behavior and rate of convergence. J. Sci. Comput. 15(1), 79–116 (2000)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bernardi, C., Maday, Y.: Properties of some weighted Sobolev spaces and application to spectral approximations. SIAM J. Numer. Anal. 26(4), 769–829 (1989)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bernardi, C., Maday, Y.: Polynomial interpolation results in Sobolev spaces. J. Comput. Appl. Math. 43(1–2), 53–80 (1992)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bressan, A.: Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  5. 5.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006).  https://doi.org/10.1007/978-3-540-30726-6 zbMATHGoogle Scholar
  6. 6.
    Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148(2), 341–365 (1999)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Cohen, G., Ferrieres, X., Pernet, S.: A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell’s equations in time domain. J. Comput. Phys. 217(2), 340–363 (2006)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Fernández, D.C.D.R., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171–196 (2014)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Fey, M.: Multidimensional upwinding. Part II: Decomposition of the Euler equations into advection equations. J. Comput. Phys. 143(1), 181–199 (1998)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Fisher, T.C., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234, 353–375 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Funaro, D.: Polynomial Approximation of Differential Equations, vol. 8. Springer, Berlin (2008)zbMATHGoogle Scholar
  12. 12.
    Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013).  https://doi.org/10.1137/120890144 MathSciNetzbMATHGoogle Scholar
  13. 13.
    Govil, N., Mohapatra, R.: Markov and Bernstein type inequalities for polynomials. J. Inequal. Appl. 3(4), 349–387 (1999)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Gustafsson, B., Kreiss, H.O., Oliger, J.: Time-Dependent Problems and Difference Methods. Wiley, Hoboken (2013)zbMATHGoogle Scholar
  15. 15.
    Hesthaven, J., Kirby, R.: Filtering in Legendre spectral methods. Math. Comput. 77(263), 1425–1452 (2008).  https://doi.org/10.1090/S0025-5718-08-02110-8 MathSciNetzbMATHGoogle Scholar
  16. 16.
    Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181(1), 186–221 (2002)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ketcheson, D.I.: Highly efficient strong stability-preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008).  https://doi.org/10.1137/07070485X MathSciNetzbMATHGoogle Scholar
  18. 18.
    Koley, U., Mishra, S., Risebro, N.H., Svärd, M.: Higher order finite difference schemes for the magnetic induction equations. BIT Numer. Math. 49(2), 375–395 (2009).  https://doi.org/10.1007/s10543-009-0219-y MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kopriva, D.A., Gassner, G.J.: On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput. 44(2), 136–155 (2010).  https://doi.org/10.1007/s10915-010-9372-3 MathSciNetzbMATHGoogle Scholar
  20. 20.
    Kopriva, D.A., Nordström, J., Gassner, G.J.: Error boundedness of discontinuous Galerkin spectral element approximations of hyperbolic problems. J. Sci. Comput. 72(1), 314–330 (2017).  https://doi.org/10.1007/s10915-017-0358-2 MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kreiss, H.O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 195–212. Academic Press, New York (1974)Google Scholar
  22. 22.
    Manzanero, J., Rubio, G., Ferrer, E., Valero, E., Kopriva, D.A.: Insights on aliasing driven instabilities for advection equations with application to Gauss–Lobatto discontinuous Galerkin methods. J. Sci. Comput. 75, 1262–1281 (2017).  https://doi.org/10.1007/s10915-017-0585-6 MathSciNetzbMATHGoogle Scholar
  23. 23.
    Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199(2), 503–540 (2004)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Mattsson, K., Svärd, M., Nordström, J.: Stable and accurate artificial dissipation. J. Sci. Comput. 21(1), 57–79 (2004)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Mishra, S., Svärd, M.: On stability of numerical schemes via frozen coefficients and the magnetic induction equations. BIT Numer. Math. 50(1), 85–108 (2010).  https://doi.org/10.1007/s10543-010-0249-5 MathSciNetzbMATHGoogle Scholar
  26. 26.
    Nordström, J.: Conservative finite difference formulations, variable coefficients, energy estimates and artificial dissipation. J. Sci. Comput. 29(3), 375–404 (2006)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Nordström, J.: Error bounded schemes for time-dependent hyperbolic problems. SIAM J. Sci. Comput. 30(1), 46–59 (2007).  https://doi.org/10.1137/060654943 MathSciNetzbMATHGoogle Scholar
  28. 28.
    Nordström, J., Gustafsson, R.: High order finite difference approximations of electromagnetic wave propagation close to material discontinuities. J. Sci. Comput. 18(2), 215–234 (2003)zbMATHGoogle Scholar
  29. 29.
    Nordström, J., Ruggiu, A.A.: On conservation and stability properties for summation-by-parts schemes. J. Comput. Phys. 344, 451–464 (2017).  https://doi.org/10.1016/j.jcp.2017.05.002 MathSciNetzbMATHGoogle Scholar
  30. 30.
    Öffner, P.: Zweidimensionale klassische und diskrete orthogonale Polynome und ihre Anwendung auf spektrale Methoden zur Lösung hyperbolischer Erhaltungsgleichungen. Ph.D. thesis, TU Braunschweig (2015)Google Scholar
  31. 31.
    Öffner, P.: Error boundedness of correction procedure via reconstruction/flux reconstruction (2018). arXiv:1806.01575 [math.NA] (submitted)
  32. 32.
    Öffner, P., Sonar, T.: Spectral convergence for orthogonal polynomials on triangles. Numer. Math. 124(4), 701–721 (2013).  https://doi.org/10.1007/s00211-013-0530-z MathSciNetzbMATHGoogle Scholar
  33. 33.
    Ranocha, H.: Comparison of some entropy conservative numerical fluxes for the Euler equations. J. Sci. Comput. 76, 216–242 (2017).  https://doi.org/10.1007/s10915-017-0618-1 MathSciNetzbMATHGoogle Scholar
  34. 34.
    Ranocha, H.: Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM Int. J. Geomath. 8(1), 85–133 (2017).  https://doi.org/10.1007/s13137-016-0089-9 MathSciNetzbMATHGoogle Scholar
  35. 35.
    Ranocha, H.: Generalised summation-by-parts operators and entropy stability of numerical methods for hyperbolic balance laws. Ph.D. thesis, TU Braunschweig (2018)Google Scholar
  36. 36.
    Ranocha, H.: Generalised summation-by-parts operators and variable coefficients. J. Comput. Phys. 362, 20–48 (2018).  https://doi.org/10.1016/j.jcp.2018.02.021 MathSciNetzbMATHGoogle Scholar
  37. 37.
    Ranocha, H., Öffner, P.: \(L_2\) stability of explicit Runge–Kutta schemes. J. Sci. Comput. 75(2), 1040–1056 (2018).  https://doi.org/10.1007/s10915-017-0595-4 MathSciNetzbMATHGoogle Scholar
  38. 38.
    Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299–328 (2016).  https://doi.org/10.1016/j.jcp.2016.02.009 MathSciNetzbMATHGoogle Scholar
  39. 39.
    Ranocha, H., Öffner, P., Sonar, T.: Extended skew-symmetric form for summation-by-parts operators and varying Jacobians. J. Comput. Phys. 342, 13–28 (2017).  https://doi.org/10.1016/j.jcp.2017.04.044 MathSciNetzbMATHGoogle Scholar
  40. 40.
    Ranocha, H., Ostaszewski, K., Heinisch, P.: InductionEq. A set of tools for numerically solving the nonlinear magnetic induction equation with Hall effect in OpenCL (2018).  https://doi.org/10.5281/zenodo.1434409. https://github.com/MuMPlaCL/InductionEq
  41. 41.
    Ranocha, H., Ostaszewski, K., Heinisch, P.: Numerical methods for the magnetic induction equation with Hall effect and projections onto divergence-free vector fields (2018). arXiv:1810.01397 [math.NA] (submitted)
  42. 42.
    Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Steger, J.L., Warming, R.: Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. J. Comput. Phys. 40(2), 263–293 (1981)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Van Leer, B.: Flux-vector splitting for the Euler equation. In: Upwind and High-Resolution Schemes, pp. 80–89. Springer (1997)Google Scholar
  46. 46.
    Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47(1), 50–72 (2011).  https://doi.org/10.1007/s10915-010-9420-z MathSciNetzbMATHGoogle Scholar
  47. 47.
    Vincent, P.E., Farrington, A.M., Witherden, F.D., Jameson, A.: An extended range of stable-symmetric-conservative flux reconstruction correction functions. Comput. Methods Appl. Mech. Eng. 296, 248–272 (2015).  https://doi.org/10.1016/j.cma.2015.07.023 MathSciNetGoogle Scholar
  48. 48.
    Zhang, Q., Shu, C.W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42(2), 641–666 (2004)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Universität ZürichZürichSwitzerland
  2. 2.TU BraunschweigBraunschweigGermany

Personalised recommendations