Advertisement

Maximum-Principle-Satisfying and Positivity-Preserving High Order Central DG Methods on Unstructured Overlapping Meshes for Two-Dimensional Hyperbolic Conservation Laws

  • Maojun Li
  • Haiyun Dong
  • Binbin Hu
  • Liwei XuEmail author
Article
  • 37 Downloads

Abstract

In this paper, we first present a family of high order central discontinuous Galerkin methods defined on unstructured overlapping meshes for the two-dimensional conservation laws. The primal mesh is a triangulation of the computational domain, while the dual mesh is a quadrangular partition which is formed by connecting an interior point and the three vertexes of each triangle on the primal mesh. We prove the \(L^2\) stability of the present method for linear equation. Then we design and analyze high order maximum-principle-satisfying central discontinuous Galerkin methods for two-dimensional scalar conservation law, and high order positivity-preserving central discontinuous Galerkin methods for two-dimensional compressible Euler systems. The performance of the proposed methods is finally demonstrated through a set of numerical experiments.

Keywords

Conservation laws Central discontinuous Galerkin methods Unstructured overlapping meshes Maximum principle Positivity preserving 

Mathematics Subject Classification

65M60 76M10 

Notes

Acknowledgements

ML is partially supported by a NSFC (Grant No. 11501062, 11871139). HD is partially supported by a NSFC (Grant No. 11701055). LX is partially supported by a Key Project of the Major Research Plan of NSFC (Grant No. 91630205) and a NSFC (Grant No. 11771068).

References

  1. 1.
    Brio, M., Zakharian, A.R., Webb, G.M.: Two-dimensional Riemann solver for Euler equations of gas dynamics. J. Comput. Phys. 167, 177–195 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Chen, G., Feng, M.: Stabilized finite element methods for the Biot’s consolidation problem. Adv. Appl. Math. Mech. 10, 77–99 (2018)MathSciNetGoogle Scholar
  3. 3.
    Chen, G., Hu, W.W., Shen, J.G., Singler, J.R., Zhang, Y.W., Zheng, X.B.: An HDG method for distributed control of convection diffusion PDEs. J. Comput. Appl. Math. 343, 643–661 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, Y., Luo, Y., Feng, M.: Analysis of a discontinuous Galerkin method for the Biot’s consolidation problem. Appl. Math. Comput. 219, 9043–9056 (2013)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Cheng, Y., Li, F., Qiu, J., Xu, L.: Positivity-preserving DG and central DG methods for ideal MHD equations. J. Comput. Phys. 238, 255–280 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2000)CrossRefzbMATHGoogle Scholar
  9. 9.
    Deng, X.-L., Li, M.: Simulating compressible two-medium flows with sharp-interface adaptive Runge–Kutta discontinuous Galerkin methods. J. Sci. Comput. 74, 1347–1368 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dong, H., Li, M.: A reconstructed central discontinuous Galerkin-finite element method for the fully nonlinear weakly dispersive Green–Naghdi model. Appl. Numer. Math. 110, 110–127 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dong, H., Lv, M., Li, M.: A reconstructed central discontinuous Galerkin method for conservation laws. Comput. Fluids 153, 76–84 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability preserving high order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kim, H.H., Chung, E.T., Lee, C.S.: A staggered discontinuous Galerkin method for the Stokes system. SIAM J. Numer. Anal. 51, 3327–3350 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Li, F., Yakovlev, S.: A central discontinuous Galerkin method for Hamilton–Jacobi equations. J. Sci. Comput. 45, 404–428 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Li, F., Xu, L.: Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations. J. Comput. Phys. 231, 2655–2675 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Li, F., Xu, L., Yakovlev, S.: Central discontinuous Galerkin methods for ideal MHD equations with exactly divergence-free magnetic field. J. Comput. Phys. 230, 4828–4847 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Li, M., Guyenne, P., Li, F., Xu, L.: High order well-balanced CDG-FE methods for shallow water waves by a Green-Naghdi model. J. Comput. Phys. 257, 169–192 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Li, M., Chen, A.: High order central discontinuous Galerkin-finite element methods for the Camassa–Holm equation. Appl. Math. Comput. 227, 237–245 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Li, M., Li, F.Z., Xu, L.: Maximum-principle-satisfying and positivity-preserving high order CDG methods for conservation laws. SIAM J. Sci. Comput. 38, A3720–A3740 (2016)CrossRefzbMATHGoogle Scholar
  21. 21.
    Li, M., Guyenne, P., Li, F., Xu, L.: A positivity-preserving well-balanced central discontinuous Galerkin method for the nonlinear shallow water equations. J. Sci. Comput. 711, 994–1034 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Li, M., Jiang, Y., Dong, H.: High order well-balanced central local discontinuous Galerkin-finite element methods for solving the Green–Naghdi model. Appl. Math. Comput. 315, 113–130 (2017)MathSciNetGoogle Scholar
  23. 23.
    Li, X.: Boundedness in a two-dimensional attraction-repulsion system with nonlinear diffusion. Math. Methods Appl. Sci. 39, 289–301 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Liu, Y., Shu, C.-W., Tadmor, E., Zhang, M.: Central discontinuous Galerkin methods on overlapping cells with a nonoscillatary hierarchical reconstruction. SIAM J. Numer. Anal. 45, 2442–2467 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Liu, Y., Shu, C.-W., Tadmor, E., Zhang, M.: Central local discontinuous Galerkin methods on overlapping cells for diffusion equations. ESAIM: Math. Model. Numer. Anal. 45, 1009–1032 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Luo, Y., Feng, M., Xu, Y.: A stabilized mixed discontinuous Galerkin method for the incompressible miscible displacement problem. Bound. Value Probl. 2011, 48 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)Google Scholar
  28. 28.
    Ren, X., Wu, J., Xiang, Z., Zhang, Z.: Global existence and decay of smooth solution for the 2-D MHD equation without magnetic diffusion. J. Funct. Anal. 267, 503–541 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Shu, C.-W.: Essentially Non-oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws, ICASE Report. Brown University, Rhode Island (1997)Google Scholar
  30. 30.
    Sun, M., Takayama, K.: The formation of a secondary shock wave behind a shock wave diffracting at a convex corner. Shock Waves 7, 287–295 (1997)CrossRefzbMATHGoogle Scholar
  31. 31.
    Tang, H., Warnecke, G.: A Runge–Kutta discontinuous Galerkin method for the Euler equations. Comput. Fluids 34, 375–398 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Vukovic, S., Sopta, L.: ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations. J. Comput. Phys. 179, 593–621 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Wang, C., Zhang, X., Shu, C.-W., Ning, J.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231, 653–665 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Xu, Z., Liu, Y.: New central and central discontinuous Galerkin schemes on overlapping cells of unstructured grids for solving ideal magnetohydrodynamic equations with globally divergence-free magnetic field. J. Comput. Phys. 327, 203–224 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zhang, X., Xia, Y., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci. Comput. 50, 29–62 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.College of Mathematics and StatisticsChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations