Advertisement

Journal of Scientific Computing

, Volume 76, Issue 1, pp 216–242 | Cite as

Comparison of Some Entropy Conservative Numerical Fluxes for the Euler Equations

  • Hendrik RanochaEmail author
Article

Abstract

Entropy conservation and stability of numerical methods in gas dynamics have received much interest. Entropy conservative numerical fluxes can be used as ingredients in two kinds of schemes: firstly, as building blocks in the subcell flux differencing form of Fisher and Carpenter (Technical Report NASA/TM-2013-217971, NASA, 2013; J Comput Phys 252:518–557, 2013) and secondly (enhanced by dissipation) as numerical surface fluxes in finite volume like schemes. The purpose of this article is threefold. Firstly, the flux differencing theory is extended, guaranteeing high-order for general symmetric and consistent numerical fluxes and investigating entropy stability in a generalised framework of summation-by-parts operators applicable to multiple dimensions and simplex elements. Secondly, a general procedure to construct affordable entropy conservative fluxes is described explicitly and used to derive several new fluxes. Finally, robustness properties of entropy stable numerical fluxes are investigated and positivity preservation is proven for several entropy conservative fluxes enhanced with local Lax–Friedrichs type dissipation operators. All these theoretical investigations are supplemented with numerical experiments.

Keywords

Euler equations Summation-by-parts Flux differencing Entropy stability Positivity preservation 

Mathematics Subject Classification

65M70 65M60 65M06 65M12 

Notes

Acknowledgements

The author would like to thank the anonymous reviewers for their helpful comments.

References

  1. 1.
    Barth, T.J.: Numerical methods for gasdynamic systems on unstructured meshes. In: Kröner, D., Ohlberger, M., Rohde, C. (eds.) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, pp. 195–285. Springer, Berlin (1999)CrossRefGoogle Scholar
  2. 2.
    Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations. Commun. Comput. Phys. 14(5), 1252–1286 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, H.: Means generated by an integral. Math. Mag. 78(5), 397–399 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Coquel, F., Godlewski, E., Perthame, B., In, A., Rascle, P.: Some new Godunov and relaxation methods for two-phase flow problems. In: Toro, E.F. (ed.) Godunov Methods, pp. 179–188. Springer, New York (2001)CrossRefGoogle Scholar
  6. 6.
    Derigs, D., Winters, A.R., Gassner, G.J., Walch, S.: A novel high-order, entropy stable, 3D AMR MHD solver with guaranteed positive pressure. J. Comput. Phys. 317, 223–256 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Derigs, D., Winters, A.R., Gassner, G.J., Walch, S.: A novel averaging technique for discrete entropy-stable dissipation operators for ideal MHD. J. Comput. Phys. 330, 624–632 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ducros, F., Laporte, F., Souleres, T., Guinot, V., Moinat, P., Caruelle, B.: High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows. J. Comput. Phys. 161(1), 114–139 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. Technical Report NASA/TM-2013-217971, NASA, NASA Langley Research Center, Hampton (2013)Google Scholar
  11. 11.
    Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67(221), 73–85 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hicken, J.E., Fernández, D.C.D.R., Zingg, D.W.: Multidimensional summation-by-parts operators: general theory and application to simplex elements. SIAM J. Sci. Comput. 38(4), A1935–A1958 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jameson, A.: Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes. J. Sci. Comput. 34(2), 188–208 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kennedy, C.A., Gruber, A.: Reduced aliasing formulations of the convective terms within the Navier–Stokes equations for a compressible fluid. J. Comput. Phys. 227(3), 1676–1700 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Morinishi, Y.: Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows. J. Comput. Phys. 229(2), 276–300 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pirozzoli, S.: Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43, 163–194 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ranocha, H.: SBP operators for CPR methods. Master’s thesis, TU Braunschweig (2016)Google Scholar
  20. 20.
    Ranocha, H.: Comparison of some entropy conservative numerical fluxes for the Euler equations (2017). arXiv:1701.02264 [math.NA]
  21. 21.
    Ranocha, H.: Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM Int. J. Geomath. 8(1), 85–133 (2017).  https://doi.org/10.1007/s13137-016-0089-9 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Roe, P.L.: Affordable, entropy-consistent Euler flux functions. In: Talk Presented at the Eleventh International Conference on Hyperbolic Problems: Theory, Numerics, Applications (2006). http://www2.cscamm.umd.edu/people/faculty/tadmor/references/files/Roe_Affordable_entropy_Hyp2006.pdf
  23. 23.
    Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91–103 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (2009)CrossRefzbMATHGoogle Scholar
  27. 27.
    Winters, A.R., Derigs, D., Gassner, G.J., Walch, S.: A uniquely defined entropy stable matrix dissipation operator for high Mach number ideal MHD and compressible Euler simulations. J. Comput. Phys. 332, 274–289 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zhang, X., Shu, C.W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918–8934 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zhang, X., Shu, C.W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. Proc. R. Soc. Lond. A Math. 467(2134), 2752–2776 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.TU BraunschweigBrunswickGermany

Personalised recommendations