Journal of Scientific Computing

, Volume 75, Issue 3, pp 1385–1414 | Cite as

Interior Penalties for Summation-by-Parts Discretizations of Linear Second-Order Differential Equations

  • Jianfeng YanEmail author
  • Jared Crean
  • Jason E. Hicken


This work focuses on simultaneous approximation terms (SATs) for multidimensional summation-by-parts (SBP) discretizations of linear second-order partial differential equations with variable coefficients. Through the analysis of adjoint consistency and stability, we present several conditions on the SAT penalties for general operators, including those operators that do not have nodes on their boundary or do not correspond with a collocation discontinuous Galerkin method. Based on these conditions, we generalize the modified scheme of Bassi and Rebay and the symmetric interior penalty Galerkin method to SBP-SAT discretizations. Numerical experiments are carried out on unstructured grids with triangular elements to verify the theoretical results.


Summation-by-Parts Simultaneous-approximation-terms High-order Interior penalty Elliptic Adjoint consistent Energy stable 



Funding was provided by National Science Foundation (Grant No. 1554253) and Air Force Office of Scientific Research (Grant No.FA9550-15-1-0242)


  1. 1.
    Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252(1), 518–557 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Fisher, T.C.: High-order L2 stable multi-domain finite difference method for compressible flows. Ph.D. thesis, Purdue University (2012)Google Scholar
  3. 3.
    Kreiss, H.-O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 195–212. Academic Press, New York (1974)Google Scholar
  4. 4.
    Strand, B.: Summation by parts for finite difference approximations for d/dx. J. Comput. Phys. 110(1), 47–67 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy stable spectral collocation schemes for the Navier–Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36(5), B835–B867 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Parsani, M., Carpenter, M .H., Nielsen, E .J.: Entropy stable wall boundary conditions for the three-dimensional compressible Navier–Stokes equations. J. Comput. Phys. 292(C), 88–113 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gassner, G .J., Winters, A .R., Kopriva, D .A.: Split form nodal discontinuous Galerkin Schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327(C), 39–66 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, T., Shu, C.-W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Crean, J., Hicken, J.E., Del Rey Fernández, D.C., Zingg, D.W., Carpenter, M.H.: Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements. J. Comput. Phys. (in revision) (2017)Google Scholar
  10. 10.
    Hicken, J.E., Del Rey Fernández, D.C., Zingg, D.W.: Multi-dimensional summation-by-parts operators: general theory and application to simplex elements. SIAM J. Sci. Comput. 38(4), A1935–A1958 (2016)CrossRefzbMATHGoogle Scholar
  11. 11.
    Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148(2), 341–365 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Carpenter, M.H., Nordström, J., Gottlieb, D.: Revisiting and extending interface penalties for multi-domain summation-by-parts operators. J. Sci. Comput. 45(1), 118–150 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mattsson, K., Carpenter, M.H.: Stable and accurate interpolation operators for high-order multiblock finite difference methods. SIAM J. Sci. Comput. 32(4), 2298–2320 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gong, J., Nordström, J.: Interface procedures for finite difference approximations of the advection–diffusion equation. J. Comput. Appl. Math. 236(5), 602–620 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Del Rey Fernández, D.C., Zingg, D .W.: Generalized summation-by-parts operators for the second derivative with a variable coefficient. SIAM J. Sci. Comput 37(6), A2840–A2864 (2015)CrossRefzbMATHGoogle Scholar
  16. 16.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Warburton, T., Hesthaven, J.: On the constants in hp-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192(25), 2765–2773 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method for convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 175(3), 311–341 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Bassi, F., Crivellini, A., Rebay, S., Savini, M.: Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k turbulence model equations. Comput. Fluids 34(45), 507–540 (2005)CrossRefzbMATHGoogle Scholar
  20. 20.
    Douglas, J., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods computing methods in applied sciences. In: Glowinski, R., Lions, J.L. (ed), Computing Methods in Applied Sciences, Volume 58 of Lecture Notes in Physics, Chap. 6, pp. 207–216. Springer, Berlin (1976)Google Scholar
  21. 21.
    Hartmann, R.: Adjoint consistency analysis of discontinuous Galerkin discretizations. SIAM J. Numer. Anal. 45(6), 2671–2696 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hicken, J.E., Del Rey Fernández, D.C., Zingg, D.W.: Simultaneous approximation terms for multi-dimensional summation-by-parts operators. In: 46th AIAA Fluid Dynamics Conference, Washington, DC, AIAA-2016-3971 (June 2016)Google Scholar
  23. 23.
    Del Rey Fernández, D.C., Hicken, J.E., Zingg, D.W.: Simultaneous approximation terms for multi-dimensional summation-by-parts operators. J. Sci. Comput. 1–28 (2017).
  24. 24.
    Mattsson, K.: Summation by parts operators for finite difference approximations of second-derivatives with variable coefficients. J. Sci. Comput. 51(3), 650–682 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lipnikov, K., Manzini, G., Shashkov, M.: Mimetic finite difference method. J. Comput. Phys. 257, 1163–1227 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Babuška, I., Miller, A.: The post-processing approach in the finite element methodpart 1: calculation of displacements, stresses and other higher derivatives of the displacements. Int. J. Numer. Methods Eng. 20(6), 1085–1109 (1984)CrossRefzbMATHGoogle Scholar
  27. 27.
    Babuška, I., Miller, A.: The post-processing approach in the finite element methodPart 2: the calculation of stress intensity factors. Int. J. Numer. Methods Eng. 20(6), 1111–1129 (1984)CrossRefzbMATHGoogle Scholar
  28. 28.
    Pierce, N.A., Giles, M.B.: Adjoint recovery of superconvergent functionals from PDE approximations. SIAM Rev. 42(2), 247–264 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Giles, M.B., Süli, E.: Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numer. 11, 145–236 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lu, J.C.: An a posteriori error control framework for adaptive precision optimization using discontinuous Galerkin finite element method, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (2005)Google Scholar
  31. 31.
    Fidkowski, K.J., Darmofal, D.L.: Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA J. 49(4), 673–694 (2011)CrossRefGoogle Scholar
  32. 32.
    Hicken, J.E., Zingg, D.W.: Superconvergent functional estimates from summation-by-parts finite-difference discretizations. SIAM J. Sci. Comput. 33(2), 893–922 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Hicken, J.E., Zingg, D.W.: Dual consistency and functional accuracy: a finite-difference perspective. J. Comput. Phys. 256, 161–182 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Antonietti, P.F., Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Laplace eigenproblem. Comput. Methods Appl. Mech. Eng. 195(25), 3483–3503 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Shahbazi, K., Mavriplis, D.J., Burgess, N.K.: Multigrid algorithms for high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations. J. Comput. Phys. 228(21), 7917–7940 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Peraire, J., Persson, P.-O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30(4), 1806–1824 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Shahbazi, K.: An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205(2), 401–407 (2005)CrossRefzbMATHGoogle Scholar
  38. 38.
    Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, New York (2008)CrossRefzbMATHGoogle Scholar
  39. 39.
    Kirby, R.M., Karniadakis, G.E.: Selecting the numerical flux in discontinuous Galerkin methods for diffusion problems. J. Sci. Comput. 22–23(1–3), 385–411 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Rensselaer Polytechnic InstituteTroyUSA

Personalised recommendations