Journal of Scientific Computing

, Volume 75, Issue 2, pp 1187–1206 | Cite as

Generalized Deconvolution Procedure for Structural Modeling of Turbulence

  • Omer San
  • Prakash Vedula


Approximate deconvolution forms a mathematical framework for the structural modeling of turbulence. The sub-filter scale flow quantities are typically recovered by using the Van Cittert iterative procedure. In this paper, however, we put forth a generalized approach for the iterative deconvolution process of sub-filter scale recovery of turbulent flows by introducing Krylov space iterative methods. Their accuracy and efficiency are demonstrated through a systematic a-priori analysis of solving the Kraichnan and Kolmogorov homogeneous isotropic turbulence problems in two- and three-dimensional domains, respectively. Our numerical assessments show that the conjugate gradient based iterative techniques lead to significantly improved performance over the Van Cittert procedure and offer great promise for approximate deconvolution turbulence models. In fact, our energy spectra analysis illustrates that a substantially longer inertial range can be recovered by using the proposed procedure equipped with the BiCGSTAB iterative scheme. This trend is also confirmed by capturing tails of the probability density function of turbulent flow quantities.


Inverse problems Approximate deconvolution Van Cittert iterations Krylov space methods Sub-filter scale modeling Kraichnan turbulence Kolmogorov turbulence 



The computing for this project was performed by using resources from the High Performance Computing Center (HPCC) at Oklahoma State University.


  1. 1.
    Al-Ameen, Z., Sulong, G., Johar, M.G.M., Verma, N., Kumar, R., Dachyar, M., Alkhawlani, M., Mohsen, A., Singh, H., Singh, S., et al.: A comprehensive study on fast image deblurring techniques. Int. J. Adv. Sci. Technol. 44 (2012)Google Scholar
  2. 2.
    Bardina, J., Ferziger, J.H., Reynolds, W.: Improved subgrid-scale models for large-eddy simulation. In: American Institute of Aeronautics and Astronautics, Fluid and Plasma Dynamics Conference, pp. 1–10, 13th, Snowmass, July 14–16 (1980)Google Scholar
  3. 3.
    Batchelor, G.K.: Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids 12(12), 233–239 (1969)CrossRefzbMATHGoogle Scholar
  4. 4.
    Berselli, L., Iliescu, T., Layton, W.J.: Mathematics of Large Eddy Simulation of Turbulent Flows. Springer, Berlin (2006)zbMATHGoogle Scholar
  5. 5.
    Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. CRC Press, Boca Raton (1998)CrossRefzbMATHGoogle Scholar
  6. 6.
    Biemond, J., Lagendijk, R.L., Mersereau, R.M.: Iterative methods for image deblurring. Proc. IEEE 78(5), 856–883 (1990)CrossRefGoogle Scholar
  7. 7.
    Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dyn. Res. 10(4–6), 199–228 (1992)CrossRefGoogle Scholar
  8. 8.
    Broyden, C.G., Vespucci, M.T.: Krylov Solvers for Linear Algebraic Systems: Krylov Solvers. Elsevier, Amsterdam (2004)zbMATHGoogle Scholar
  9. 9.
    Frisch, U.: Turbulence: The Legacy of AN Kolmogorov. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  10. 10.
    Germano, M.: Differential filters for the large eddy numerical simulation of turbulent flows. Phys. Fluids 29, 1755–1756 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Germano, M.: Differential filters of elliptic type. Phys. Fluids 29, 1757–1758 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Germano, M.: The similarity subgrid stresses associated to the approximate Van Cittert deconvolutions. Phys. Fluids 27(3), 035111 (2015)CrossRefGoogle Scholar
  13. 13.
    Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59(2), 308–323 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kitsios, V., Frederiksen, J.S., Zidikheri, M.J.: Theoretical comparison of subgrid turbulence in atmospheric and oceanic quasi-geostrophic models. Nonlinear Proc. Geophys. 23(2), 95–105 (2016)CrossRefGoogle Scholar
  15. 15.
    Kraichnan, R.H.: Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417–1423 (1967)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Layton, W., Lewandowski, R.: A simple and stable scale-similarity model for large eddy simulation: energy balance and existence of weak solutions. Appl. Math. Lett. 16(8), 1205–1209 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Layton, W., Neda, M.: A similarity theory of approximate deconvolution models of turbulence. J. Math. Anal. Appl. 333(1), 416–429 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Layton, W.J., Rebholz, L.: Approximate Deconvolution Models of Turbulence: Analysis, Phenomenology and Numerical Analysis. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  19. 19.
    Leith, C.: Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci. 28(2), 145–161 (1971)CrossRefzbMATHGoogle Scholar
  20. 20.
    Lesieur, M., Metais, O.: New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28(1), 45–82 (1996)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Maulik, R., San, O.: A stable and scale-aware dynamic modeling framework for subgrid-scale parameterizations of two-dimensional turbulence. Comput. Fluids (2016)Google Scholar
  22. 22.
    Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32(1), 1–32 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Piomelli, U.: Large-eddy simulation: achievements and challenges. Prog. Aerosp. Sci. 35(4), 335–362 (1999)CrossRefGoogle Scholar
  24. 24.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)CrossRefzbMATHGoogle Scholar
  25. 25.
    Sagaut, P.: Large Eddy Simulation for Incompressible Flows: An Introduction. Springer, Berlin (2006)zbMATHGoogle Scholar
  26. 26.
    San, O.: Analysis of low-pass filters for approximate deconvolution closure modeling in one-dimensional decaying Burgers turbulence. Int. J. Comput. Fluid Dyn. 30, 20–37 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    San, O., Staples, A.E.: High-order methods for decaying two-dimensional homogeneous isotropic turbulence. Comput. Fluids 63, 105–127 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    San, O., Staples, A.E., Iliescu, T.: A posteriori analysis of low-pass spatial filters for approximate deconvolution large eddy simulations of homogeneous incompressible flows. Int. J. Comput. Fluid Dyn. 29(1), 40–66 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Sarghini, F., Piomelli, U., Balaras, E.: Scale-similar models for large-eddy simulations. Phys. Fluids 11(6), 1596–1607 (1999)CrossRefzbMATHGoogle Scholar
  30. 30.
    Stolz, S., Adams, N.A.: An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11, 1699–1701 (1999)CrossRefzbMATHGoogle Scholar
  31. 31.
    Taylor, G., Green, A.: Mechanism of the production of small eddies from large ones. Phil. Trans. R. Soc. A. 158(895), 499–521 (1937)zbMATHGoogle Scholar
  32. 32.
    Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Van der Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems, vol. 13. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Mechanical and Aerospace EngineeringOklahoma State UniversityStillwaterUSA
  2. 2.Aerospace and Mechanical EngineeringUniversity of OklahomaNormanUSA

Personalised recommendations