Journal of Scientific Computing

, Volume 75, Issue 2, pp 657–686 | Cite as

Conservative and Stable Degree Preserving SBP Operators for Non-conforming Meshes

  • Lucas FriedrichEmail author
  • David C. Del Rey Fernández
  • Andrew R. Winters
  • Gregor J. Gassner
  • David W. Zingg
  • Jason Hicken


Non-conforming numerical approximations offer increased flexibility for applications that require high resolution in a localized area of the computational domain or near complex geometries. Two key properties for non-conforming methods to be applicable to real world applications are conservation and energy stability. The summation-by-parts (SBP) property, which certain finite-difference and discontinuous Galerkin methods have, finds success for the numerical approximation of hyperbolic conservation laws, because the proofs of energy stability and conservation can discretely mimic the continuous analysis of partial differential equations. In addition, SBP methods can be developed with high-order accuracy, which is useful for simulations that contain multiple spatial and temporal scales. However, existing non-conforming SBP schemes result in a reduction of the overall degree of the scheme, which leads to a reduction in the order of the solution error. This loss of degree is due to the particular interface coupling through a simultaneous-approximation-term (SAT). We present in this work a novel class of SBP–SAT operators that maintain conservation, energy stability, and have no loss of the degree of the scheme for non-conforming approximations. The new degree preserving discretizations require an ansatz that the norm matrix of the SBP operator is of a degree \(\ge 2p\), in contrast to, for example, existing finite difference SBP operators, where the norm matrix is \(2p-1\) accurate. We demonstrate the fundamental properties of the new scheme with rigorous mathematical analysis as well as numerical verification.


First derivative Summation-by-parts Simultaneous-approximation-term Conservation Energy stability Finite difference methods Non-conforming methods Intermediate grids 



The work of Lucas Friedrich, Andrew Winters and Gregor Gassner was funded by the Deutsche Forschungsgemeinschaft (DFG) Grant TA 2160/1-1. The work of Jason Hicken was partially funded by the Air Force Office of Scientific Research Award FA9550-15-1-0242 under Dr. Jean-Luc Cambier. This work was partially performed on the Cologne High Efficiency Operating Platform for Sciences (CHEOPS) at the Regionales Rechenzentrum Köln (RRZK).

Supplementary material

10915_2017_563_MOESM1_ESM.m (3 kb)
Supplementary material 1 (m 4 KB)
10915_2017_563_MOESM2_ESM.m (1 kb)
Supplementary material 2 (m 2 KB)
10915_2017_563_MOESM3_ESM.m (28 kb)
Supplementary material 3 (m 28 KB)
10915_2017_563_MOESM4_ESM.m (3 kb)
Supplementary material 4 (m 4 KB)
10915_2017_563_MOESM5_ESM.m (1 kb)
Supplementary material 5 (m 1 KB)
10915_2017_563_MOESM6_ESM.m (1 kb)
Supplementary material 6 (m 1 KB)


  1. 1.
    Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy stable spectral collocation schemes for the Navier–Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36, B835–B867 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Carpenter, M.H., Gottlieb, D.: Spectral methods on arbitrary grids. J. Comput. Phys. 129, 74–86 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys. 111, 220–236 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Carpenter, M.H., Kennedy, C.A.: Fourth-order 2N-storage Runge–Kutta schemes. Tech. Report, NASA TM-109112. NASA Langley Research Center (1994)Google Scholar
  5. 5.
    Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148, 341–365 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Del Rey Fernández, D.C., Boom, P.D., Zingg, D.W.: A generalized framework for nodal first derivative summation-by-parts operators. J. Comput. Phys. 266, 214–239 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Del Rey Fernández, D.C., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171–196 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Del Rey Fernández, D.C., Hicken, J.E., Zingg, D.W.: Simultaneous approximation terms for multidimensional summation-by-parts operators. J. Sci. Comput. (see arXiv:1605.03214v2 [math.NA]), (2016)
  9. 9.
    Del Rey Fernández, D.C., Zingg, D.W.: Generalized summation-by-parts operators for the second derivative with a variable coefficient. SIAM J. Sci. Comput. 37, A2840–A2864 (2015)CrossRefzbMATHGoogle Scholar
  10. 10.
    Del Rey Fernández, D.C., Zingg, D.W.: Corner-corrected diagonal-norm summation-by-parts operators for the first derivative with increased order of accuracy. J. Comput. Phys. 330, 902–923 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP–SAT finite difference methods. SIAM J. Sci. Comput. 35, A1233–A1253 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. In: Pure and Applied Mathematics, 2nd edn. Willey, New York (2013)Google Scholar
  15. 15.
    Hicken, J.E., Del Rey Fernández, D.C., Zingg, D.W.: Opportunities for efficient high-order methods based on the summation-by-parts property, In: 22nd Conference on AIAA Computational Fluid Dynamics, AIAA Paper 2015-3198, Dallas, Texas, USA, (2015)Google Scholar
  16. 16.
    Hicken, J.E., Del Rey Fernández, D.C., Zingg, D.W.: Multidimensional summation-by-part operators: general theory and application to simplex elements. SIAM J. Sci. Comput. 38, A1935–A1958 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hicken, J.E., Del Rey Fernández, D.C., Zingg, D.W.: Simultaneous approximation terms for multidimensional summation-by-parts operators, In: 46th Conference on AIAA Fluid Dynamics, Washington, DC, USA. (Accepted) (2016)Google Scholar
  18. 18.
    Hicken, J.E., Zingg, D.W.: Summation-by-parts operators and high-order quadrature. J. Comput. Appl. Math. 237, 111–125 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kopriva, D.A., Gassner, G.J.: On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput. 44, 136–155 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kozdon, J.E., Wilcox, L.C.: Stable coupling of nonconforming, high-order finite difference methods. SIAM J. Sci. Comput. 3, A923–A952 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lundquist, T., Nordström, J.: On the suboptimal accuracy of summation-by-parts schemes with non-conforming block interfaces. Tech. Report, LiTH-MAT-R-2015/16-SE. Linköping University (2015)Google Scholar
  22. 22.
    Mattsson, K.: Summation by parts operators for finite difference approximations of second-derivatives with variable coefficients. J. Sci. Comput. 51, 650–682 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mattsson, K., Almquist, M., Carpenter, M.H.: Optimal diagonal-norm SBP operators. J. Comput. Phys. 264, 91–111 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mattsson, K., Carpenter, M.H.: Stable and accurate interpolation operators for high-order multiblock finite difference methods. SIAM J. Sci. Comput. 32, 2298–2320 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199, 503–540 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nordström, J., Carpenter, M.H.: Boundary and interface conditions for high-order finite-difference methods applied to the Euler and Navier-Stokes equations. J. Comput. Phys. 148, 621–645 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Nordström, J., Carpenter, M.H.: High-order finite-difference methods, multidimensional linear problems, and curvilinear coordinates. J. Comput. Phys. 173, 149–174 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Parsani, M., Carpenter, M.H., Nielsen, E.J.: Entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. J. Comput. Phys. 292, 88–113 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value-problems. J. Comput. Phys. 268, 17–38 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Lucas Friedrich
    • 1
    Email author
  • David C. Del Rey Fernández
    • 2
  • Andrew R. Winters
    • 1
  • Gregor J. Gassner
    • 1
  • David W. Zingg
    • 2
  • Jason Hicken
    • 3
  1. 1.Mathematical InstituteUniversity of CologneCologneGermany
  2. 2.Institute for Aerospace StudiesUniversity of TorontoTorontoCanada
  3. 3.Department of Mechanical, Aerospace, and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations