Journal of Scientific Computing

, Volume 73, Issue 2–3, pp 514–542 | Cite as

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations

  • Xiaofeng Cai
  • Wei Guo
  • Jing-Mei QiuEmail author


In this paper, we develop a class of high order conservative semi-Lagrangian (SL) discontinuous Galerkin methods for solving multi-dimensional linear transport equations. The methods rely on a characteristic Galerkin weak formulation, leading to \(L^2\) stable discretizations for linear problems. Unlike many existing SL methods, the high order accuracy and mass conservation of the proposed methods are realized in a non-splitting manner. Thus, the detrimental splitting error, which is known to significantly contaminate long term transport simulations, will be not incurred. One key ingredient in the scheme formulation, borrowed from CSLAM (Lauritzen et al. in J Comput Phys 229(5):1401–1424, 2010), is the use of Green’s theorem which allows us to convert volume integrals into a set of line integrals. The resulting line integrals are much easier to approximate with high order accuracy, hence facilitating the implementation. Another novel ingredient is the construction of quadratic curves in approximating sides of upstream cell, leading to quadratic-curved quadrilateral upstream cells. Formal third order accuracy is obtained by such a construction. The desired positivity-preserving property is further attained by incorporating a high order bound-preserving filter. To assess the performance of the proposed methods, we test and compare the numerical schemes with a variety of configurations for solving several benchmark transport problems with both smooth and nonsmooth solutions. The efficiency and efficacy are numerically verified.


Semi-Lagrangian Discontinuous Galerkin Transport equation Non-splitting Green’s theorem Positivity-preserving 



We are grateful to Dr. Ram Nair from National Center for Atmospheric Research for helpful discussions.


  1. 1.
    Ayuso, B., Carrillo, J., Shu, C.-W.: Discontinuous Galerkin methods for the one-dimensional Vlasov–Poisson system. KRM 4, 955–989 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Blossey, P., Durran, D.: Selective monotonicity preservation in scalar advection. J. Comput. Phys. 227(10), 5160–5183 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, New York (2008)zbMATHGoogle Scholar
  4. 4.
    Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2008)CrossRefzbMATHGoogle Scholar
  5. 5.
    Celia, M., Russell, T., Herrera, I., Ewing, R.: An Eulerian–Lagrangian localized adjoint method for the advection–diffusion equation. Adv. Water Resour. 13(4), 187–206 (1990)CrossRefGoogle Scholar
  6. 6.
    Childs, P., Morton, K.: Characteristic Galerkin methods for scalar conservation laws in one dimension. SIAM J. Numer. Anal. 27(3), 553–594 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Christlieb, A., Guo, W., Morton, M., Qiu, J.-M.: A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations. J. Comput. Phys. 267, 7–27 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Cockburn, B., Lin, S., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Cockburn, B.: Shu. C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)zbMATHGoogle Scholar
  11. 11.
    Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection \(p^1\)-discontinuous Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. 25, 337–361 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Douglas Jr., J., Russell, T.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19(5), 871–885 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Erath, C., Lauritzen, P.H., Tufo, H.M.: On mass conservation in high-order high-resolution rigorous remapping schemes on the sphere. Mon. Weather Rev. 141(6), 2128–2133 (2013)CrossRefGoogle Scholar
  16. 16.
    Giraldo, F.X.: The Lagrange–Galerkin spectral element method on unstructured quadrilateral grids. J. Comput. Phys. 147(1), 114–146 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Güçlü, Y., Christlieb, A., Hitchon, W.: Arbitrarily high order convected scheme solution of the Vlasov–Poisson system. J. Comput. Phys. 270, 711–752 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Guo, W., Nair, R., Qiu, J.-M.: A conservative semi-Lagrangian discontinuous Galerkin scheme on the cubed-sphere. Mon. Weather Rev. 142(1), 457–475 (2013)CrossRefGoogle Scholar
  19. 19.
    Guo, W., Nair, R., Zhong, X.: An efficient WENO limiter for discontinuous Galerkin transport scheme on the cubed sphere. Int. J. Numer. Methods Fluids 81, 3–21 (2015)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71(2), 231–303 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Heath, R., Gamba, I., Morrison, P., Michler, C.: A discontinuous Galerkin method for the Vlasov–Poisson system. J. Comput. Phys. 231(4), 1140–1174 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Herrera, I., Ewing, R., Celia, M., Russell, T.: Eulerian–Lagrangian localized adjoint method: the theoretical framework. Numer. Methods Part. Differ. Equ. 9(4), 431–457 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Lamarque, J.-F., Kinnison, D., Hess, P., Vitt, F.: Simulated lower stratospheric trends between 1970 and 2005: Identifying the role of climate and composition changes. J. Geophys. Res. Atmos. 113(D12) (2008). doi: 10.1029/2007JD009277
  25. 25.
    Lauritzen, P., Nair, R., Ullrich, P.: A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid. J. Comput. Phys. 229(5), 1401–1424 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Lee, D., Lowrie, R., Petersen, M., Ringler, T., Hecht, M.: A high order characteristic discontinuous Galerkin scheme for advection on unstructured meshes. J. Comput. Phys. 324, 289–302 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    LeVeque, R.: High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33(2), 627–665 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Morgenstern, O., Giorgetta, M.A., Shibata, K., Eyring, V., Waugh, D.W., Shepherd, T.G., Akiyoshi, H., Austin, J., Baumgaertner, A.J.G., Bekki, S., Braesicke, P., Brhl, C., Chipperfield, M.P., Cugnet, D., Dameris, M., Dhomse, S., Frith, S.M., Garny, H., Gettelman, A., Hardiman, S.C., Hegglin, M.I., Jckel, P., Kinnison, D.E., Lamarque, J.-F., Mancini,E., Manzini, E., Marchand, M., Michou, M., Nakamura, T., Nielsen, J.E., Pitari, D.O.G., Plummer, D.A., Rozanov, E., Scinocca, J.F., Smale, D., Teyssdre, H., Toohey, M., Tian, W., Yamashita, Y.: Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcings. J. Geophys. Res. Atmos. 115(D3) (2010). doi: 10.1029/2009JD013728
  29. 29.
    Morton, K., Priestley, A., Suli, E.: Stability of the Lagrange–Galerkin method with non-exact integration. RAIRO Modél. Math. Anal. Numér. 22, 625–653 (2010)Google Scholar
  30. 30.
    Nair, R., Thomas, S., Loft, R.: A discontinuous Galerkin transport scheme on the cubed sphere. Mon. Weather Rev. 133(4), 814–828 (2005)CrossRefGoogle Scholar
  31. 31.
    Qiu, J.-M., Shu, C.-W.: Conservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation. Commun. Comput. Phys. 10(4), 979–1000 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Qiu, J.-M., Shu, C.-W.: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov–Poisson system. J. Comput. Phys. 230(23), 8386–8409 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479 (1973)Google Scholar
  34. 34.
    Restelli, M., Bonaventura, L., Sacco, R.: A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows. J. Comput. Phys. 216(1), 195–215 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Rossmanith, J., Seal, D.: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov–Poisson equations. J. Comput. Phys. 230, 6203–6232 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Staniforth, A., Cote, J.: Semi-Lagrangian integration schemes for atmospheric models: a review. Mon. Weather Rev. 119(9), 2206–2223 (1991)CrossRefGoogle Scholar
  38. 38.
    White, J., Dongarra, J.: High-performance high-resolution semi-Lagrangian tracer transport on a sphere. J. Comput. Phys. 230(17), 6778–6799 (2011)CrossRefzbMATHGoogle Scholar
  39. 39.
    Williamson, D.L.: The evolution of dynamical cores for global atmospheric models. J. Meteor. Soc. Jpn. 85, 241–269 (2007)CrossRefGoogle Scholar
  40. 40.
    Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Zhong, X., Shu, C.-W.: A simple weighted essentially nonoscillatory limiter for Runge–Kutta discontinuous Galerkin methods. J. Comput. Phys. 232(1), 397–415 (2013)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of DelawareNewarkUSA
  2. 2.Department of Mathematics and StatisticsTexas Tech UniversityLubbockUSA

Personalised recommendations