Journal of Scientific Computing

, Volume 73, Issue 2–3, pp 853–875 | Cite as

Offline-Enhanced Reduced Basis Method Through Adaptive Construction of the Surrogate Training Set

  • Jiahua Jiang
  • Yanlai Chen
  • Akil Narayan


The reduced basis method (RBM) is a popular certified model reduction approach for solving parametrized partial differential equations. One critical stage of the offline portion of the algorithm is a greedy algorithm, requiring maximization of an error estimate over parameter space. In practice this maximization is usually performed by replacing the parameter domain continuum with a discrete “training” set. When the dimension of parameter space is large, it is necessary to significantly increase the size of this training set in order to effectively search parameter space. Large training sets diminish the attractiveness of RBM algorithms since this proportionally increases the cost of the offline phase. In this work we propose novel strategies for offline RBM algorithms that mitigate the computational difficulty of maximizing error estimates over a training set. The main idea is to identify a subset of the training set, a “surrogate training set” (STS), on which to perform greedy algorithms. The STS we construct is much smaller in size than the full training set, yet our examples suggest that it is accurate enough to induce the solution manifold of interest at the current offline RBM iteration. We propose two algorithms to construct the STS: our first algorithm, the successive maximization method, is inspired by inverse transform sampling for non-standard univariate probability distributions. The second constructs an STS by identifying pivots in the Cholesky decomposition of an approximate error correlation matrix. We demonstrate the algorithm through numerical experiments, showing that it is capable of accelerating offline RBM procedures without degrading accuracy, assuming that the solution manifold has rapidly decaying Kolmogorov width.


Reduced basis method Surrogate parameter domain Cholesky decomposition Adaptivity Greedy algorithm 


  1. 1.
    Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52(2), 317–355 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339(9), 667–672 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. In Ann. Rev. Fluid Mech. 25, 539–575. Annual Reviews, Palo Alto, CA, (1993)Google Scholar
  4. 4.
    Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43(3), 1457–1472 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chen, P., Quarteroni, A.: Accurate and efficient evaluation of failure probability for partial different equations with random input data. Comput. Methods Appl. Mech. Eng. 267, 233–260 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Chen, P., Quarteroni, A., Rozza, G.: A weighted reduced basis method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 51(6), 3163–3185 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Chen, P., Quarteroni, A., Rozza, G.: Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations. Numer. Math. 133(1), 67–102 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chen, Y.: A certified natural-norm successive constraint method for parametric inf–sup lower bounds. Appl. Numer. Math. 99, 98–108 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Chen, Y., Hesthaven, J.S., Maday, Y., Rodríguez, J.: Certified reduced basis methods and output bounds for the harmonic Maxwell’s equations. SIAM J. Sci. Comput. 32(2), 970–996 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Feldmann, P., Freund, R.W.: Efficient linear circuit analysis by padé approximation via the lanczos process. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 14(5), 639–649 (1995)CrossRefGoogle Scholar
  11. 11.
    Grepl, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. M2AN. Math. Model. Numer. Anal. 41(3), 575–605 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Grepl, M.A., Patera, A.T.: A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM Math. Model. Numer. Anal. 39(1), 157–181 (2005)CrossRefzbMATHGoogle Scholar
  13. 13.
    Gugercin, S., Antoulas, A.C.: A survey of model reduction by balanced truncation and some new results. Int. J. Control 77(8), 748–766 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Haasdonk, B.: Reduced basis methods for parametrized pdes-a tutorial introduction for stationary and instationary problems. Reduced Order Modelling, Luminy Book Series (2014)Google Scholar
  15. 15.
    Haasdonk, B.: RBmatlab 2016)Google Scholar
  16. 16.
    Haasdonk, B., Dihlmann, M., Ohlberger, M.: A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space. Math. Comput. Model. Dyn. Syst. 17(4), 423–442 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Harbrecht, H., Peters, M., Schneider, R.: On the low-rank approximation by the pivoted Cholesky decomposition. Appl. Numer. Math. 62(4), 428–440 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Hesthaven, J.S., Stamm, B., Zhang, S.: Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods? ESAIM Math. Model. Numer. Anal. 48(1), 259–283 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Huynh, D.B.P., Knezevic, D.J., Chen, Y., Hesthaven, J.S., Patera, A.T.: A natural-norm successive constraint method for inf–sup lower bounds. Comput. Methods Appl. Mech. Eng. 199(29–32), 1963–1975 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Huynh, D.B.P., Rozza, G., Sen, S., Patera, A.T.: A successive constraint linear optimization method for lower bounds of parametric coercivity and inf–sup stability constants. C. R. Math. Acad. Sci. Paris 345(8), 473–478 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Jiang, J., Chen, Y., Narayan, A.: A goal-oriented reduced basis methods-accelerated generalized polynomial Chaos algorithm. SIAM/ASA J. Uncertain. Quant. 4(1), 1398–1420 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Lassila, T., Quarteroni, A., Rozza, G.: A reduced basis model with parametric coupling for fluid-structure interaction problems. SIAM J. Sci. Comput. 34(2), A1187–A1213 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Maday, Y., Patera, A.T., Turinici, G.: Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations. C. R. Math. Acad. Sci. Paris 335(3), 289–294 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Moore, B.C.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Noor, A.K.: Recent advances in reduction methods for nonlinear problems. Comput. Struct. 13(1–3), 31–44 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Noor, A.K., Peters, J.M.: Reduced basis technique for nonlinear analysis of structures. AIAA J. 18(4), 455–462 (1980)CrossRefGoogle Scholar
  27. 27.
    Patera, A., Rozza, G.: Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations. Copyright MIT (2007)Google Scholar
  28. 28.
    Pinkus, A.: \(n\)-widths in approximation theory, volume 7 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin (1985)Google Scholar
  29. 29.
    Porsching, T.A.: Estimation of the error in the reduced basis method solution of nonlinear equations. Math. Comput. 45(172), 487–496 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Porsching, T.A., Lee, M.-Y.L.: The reduced basis method for initial value problems. SIAM J. Numer. Anal. 24(6), 1277–1287 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Quarteroni, A., Rozza, G.: Numerical solution of parametrized Navier–Stokes equations by reduced basis methods. Numer. Methods Partial Differ. Equ. 23(4), 923–948 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Quarteroni, A., Rozza, G., Manzoni, A.: Certified reduced basis approximation for parametrized partial differential equations and applications. J. Math. Ind. 1: Art. 3, 44 (2011)Google Scholar
  33. 33.
    Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Saad, Y.: Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, 2nd edn. (2003)Google Scholar
  35. 35.
    Sen, S.: Reduced-basis approximation and a posteriori error estimation for many-parameter heat conduction problems. Numer. Heat Transf. Part B Fundam. 54(5), 369–389 (2008)CrossRefGoogle Scholar
  36. 36.
    Urban, K., Volkwein, S., Zeeb, O.: Greedy sampling using nonlinear optimization. In: Reduced Order Methods for Modeling and Computational Reduction, pp. 137–157. Springer (2014)Google Scholar
  37. 37.
    Veroy, K., Patera, A.T.: Certified real-time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced-basis a posteriori error bounds. Internat. J. Numer. Methods Fluids 47(8–9), 773–788 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)CrossRefGoogle Scholar
  39. 39.
    Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Massachusetts DartmouthNorth DartmouthUSA
  2. 2.Scientific Computing and Imaging (SCI) Institute and Department of MathematicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations