Journal of Scientific Computing

, Volume 74, Issue 3, pp 1533–1553 | Cite as

Numerical Approximations for the Cahn–Hilliard Phase Field Model of the Binary Fluid-Surfactant System

  • Xiaofeng Yang


In this paper, we consider the numerical approximations for the commonly used binary fluid-surfactant phase field model that consists two nonlinearly coupled Cahn–Hilliard equations. The main challenge in solving the system numerically is how to develop easy-to-implement time stepping schemes while preserving the unconditional energy stability. We solve this issue by developing two linear and decoupled, first order and a second order time-stepping schemes using the so-called “invariant energy quadratization” approach for the double well potentials and a subtle explicit-implicit technique for the nonlinear coupling potential. Moreover, the resulting linear system is well-posed and the linear operator is symmetric positive definite. We rigorously prove the first order scheme is unconditionally energy stable. Various numerical simulations are presented to demonstrate the stability and the accuracy thereafter.


Phase-field Fluid-surfactant Cahn–Hilliard Unconditional energy stability Ginzburg–Landau Invariant energy quadratization 


  1. 1.
    Anderson, D .M., McFadden, G .B., Wheeler, A .A.: Diffuse-interface methods in fluid mechanics. Ann. Rev. Fluid Mech. 30(1), 139–165 (1998)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Binder, K.: Collective diffusion, nucleation, and spinodal decomposition in polymer mixtures. J. Chem. Phys. 79, 6387 (1983)CrossRefGoogle Scholar
  3. 3.
    Caffarelli, L.A., Muler, N.E.: An \(\text{ L }^\infty \) bound for solutions of the Cahn–Hilliard equation. Arch. Ration. Mech. Anal. 133(2), 129–144 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)CrossRefGoogle Scholar
  5. 5.
    Chen, L.Q., Wang, Y.: The continuum field approach to modeling microstructural evolution. JOM 48, 13–18 (1996)CrossRefGoogle Scholar
  6. 6.
    Chen, R., Ji, G., Yang, X., Zhang, H.: Decoupled energy stable schemes for phase-field vesicle membrane model. J. Comput. Phys. 302, 509–523 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cheng, Q., Yang, X., Shen, J.: Efficient and accurate numerical schemes for a hydrodynamically coupled phase field diblock copolymer model. J. Comput. Phys. 341, 44–60 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    de Gennes, P.G.: Dynamics of fluctuations and spinodal decomposition in polymer blends. J. Chem. Phys. 7, 4756 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198, 450–468 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Computational and Mathematical Models of Microstructural Evolution (San Francisco, CA, 1998), Materials Research Society Symposium Proceedings, vol. 529, pp. 39–46. MRS, Warrendale, PA (1998)Google Scholar
  11. 11.
    Feng, X., Prol, A.: Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math. 94, 33–65 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fonseca, I., Morini, M., Slastikov, V.: Surfactants in foam stability: a phase-field approach. Arch. Ration. Mech. Anal. 183, 411–456 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Forest, M.G., Wang, Q., Yang, X.: LCP droplet dispersions: a two-phase, diffuse-interface kinetic theory and global droplet defect predictions. Soft Matter 8, 9642–9660 (2012)CrossRefGoogle Scholar
  14. 14.
    Gompper, G., Schick, M.: Self-assembling amphiphilic systems. In: Domb, C., Lebowitz, J. (eds.) Phase trasitions and critical phenomena, vol. 16. Academic Press, London (1994)Google Scholar
  15. 15.
    Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Guillén-González, F., Tierra, G.: On linear schemes for a Cahn–Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gurtin, M.E., Polignone, D., Viñals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6(6), 815–831 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Han, D., Brylev, A., Yang, X., Tan, Z.: Numerical analysis of second order, fully discrete energy stable schemes for phase field models of two phase incompressible flows. J. Sci. Comput. 70, 965–989 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Han, D., Wang, X.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn–Hilliard–Navier–Stokes equation. J. Comput. Phys. 290, 139–156 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jacqmin, D.: Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155(1), 96–127 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kapustina, M., Tsygakov, D., Zhao, J., Wessler, J., Yang, X., Chen, A., Roach, N., Wang, Q., Elston, T .C., Jacobson, K., Forest, M .G.: Modeling the excess cell surface stored in a complex morphology of bleb-like protrusions. PLOS Comput. Biol. 12, e1004841 (2016)CrossRefGoogle Scholar
  22. 22.
    Kim, J.: Numerical simulations of phase separation dynamics in a water–oil–surfactant system. J. Colloid Interface Sci. 303, 272–279 (2006)CrossRefGoogle Scholar
  23. 23.
    Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys 12(3), 613–661 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kim, J., Lowengrub, J.: Phase field modeling and simulation of three-phase flows. Interface Free Bound. 7, 435–466 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Komura, S., Kodama, H.: Two-order-parameter model for an oil–water–surfactant system. Phys. Rev. E 55, 1722–1727 (1997)CrossRefGoogle Scholar
  26. 26.
    Laradji, M., Guo, H., Grant, M., Zuckermann, M.J.: The effect of surfactants on the dynamics of phase separation. J. Phys. Condens. Matter 4(32), 6715 (1992)CrossRefGoogle Scholar
  27. 27.
    Laradji, M., Mouristen, O.G., Toxvaerd, S., Zuckermann, M.J.: Molecular dynamics simulatiens af phase separation in the presence of surfactants. Phys. Rev. E 50, 1722–1727 (1994)CrossRefGoogle Scholar
  28. 28.
    Little, T.S., Mironov, V., Nagy-Mehesz, A., Markwald, R., Sugi, Y., Lessner, S.M., Sutton, M.A., Liu, X., Wang, Q., Yang, X., Blanchette, J.O., Skiles, M.: Engineering a 3D, biological construct: representative research in the south carolina project for organ biofabrication. Biofabrication 3, 030202 (2011)CrossRefGoogle Scholar
  29. 29.
    Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179(3–4), 211–228 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Liu, C., Shen, J., Yang, X.: Dynamics of defect motion in nematic liquid crystal flow: modeling and numerical simulation. Commun. Comput. Phys. 2, 1184–1198 (2007)zbMATHGoogle Scholar
  31. 31.
    Liu, C., Shen, J., Yang, X.: Decoupled energy stable schemes for a phase filed model of two-phase incompressible flows with variable density. J. Sci. Comput. 62, 601–622 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Lowengrub, J.S., Ratz, A., Voigt, A.: Phase field modeling of the dynamics of multicomponent vesicles spinodal decomposition coarsening budding and fission. Phys. Rev. E 79(3), 031926 (2009)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Ma, L., Chen, R., Yang, X., Zhang, H.: Numerical approximations for Allen–Cahn type phase field model of two-phase incompressible fluids with moving contact lines. Commun. Comput. Phys. 21, 867–889 (2017)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199, 2765–2778 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Minjeaud, S.: An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–Stokes model. Numer. Methods Partial Diff. Equ. 29, 584–618 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Myers, D.: Surfactant Science and Technology, 3rd edn. Wiley, Hoboken (2006)Google Scholar
  38. 38.
    Nochetto, R .H., Salgado, A .J., Tomas, I.: A diffuse interface model for two-phase ferrofluid flows. Comput. Methods Appl. Mech. Eng. 309, 497–531 (2016)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Patzold, G., Dawson, K.: Numerical simulation of phase separation in the presence of surfactants and hydrodynamics. Phys. Rev. E 52(6), 6908–6911 (1995)CrossRefGoogle Scholar
  40. 40.
    Qian, T.-Z., Wang, X.-P., Sheng, P.: A variational approach to the moving contact line hydrodynamics. J. Fluid Mech. 564, 333–360 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen–Cahn equation. Commun. Math. Sci. 14, 1517–1534 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Shen, J., Wang, C., Wang, S., Wang, X.: Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Shen, J., Yang, X.: An efficient moving mesh spectral method for the phase-field model of two-phase flows. J. Comput. Phys. 228, 2978–2992 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Shen, J., Yang, X.: Energy stable schemes for Cahn–Hilliard phase-field model of two-phase incompressible flows. Chin. Ann. Math. Ser. B 31(5), 743–758 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Continuous Dyn. Syst. A 28, 1669–1691 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Shen, J., Yang, X.: A phase field model and its numerical approximation for two phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32, 1159–1179 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Shen, J., Yang, X.: Decoupled energy stable schemes for phase filed models of two phase complex fluids. SIAM J. Sci. Comput. 36, B122–B145 (2014)CrossRefzbMATHGoogle Scholar
  48. 48.
    Shen, J., Yang, X.: Decoupled, energy stable schemes for phase field models of two phase incompressible flows. SIAM J. Numer. Anal. 53, 279–296 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Shen, J., Yang, X., Wang, Q.: On mass conservation in phase field models for binary fluids. Commun. Comput. Phys. 13, 1045–1065 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Shen, J., Yang, X., Yu, H.: Efficient energy stable numerical schemes for a phase field moving contact line model. J. Comput. Phys. 284, 617–630 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Spatschek, R., Brener, E., Karma, A.: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Philos. Mag. 91, 75–95 (2010)CrossRefGoogle Scholar
  52. 52.
    Spinler, E.A., Zornes, D.R., Tobola, D.P., Moradi-Araghi, A.: Enhancement of oil recovery using a low concentration of surfactant to improve spontaneous and forced imbibition in chalk. In: Society of Petroleum Engineers, pp. 3–5 (2000)Google Scholar
  53. 53.
    Teng, C .H., Chern, I .L., Lai, M .C.: Simulating binary fluid-surfactant dynamics by a phase field model. Discrete Continuous Dyn. Syst. B 17, 1289–1307 (2010)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Teramoto, T., Yonezawa, F.: Droplet growth dynamics in a water/oil/surfactant system. J. Colloid Interface Sci. 235, 329–333 (2001)CrossRefGoogle Scholar
  55. 55.
    van der Sman, R., van der Graaf, S.: Diffuse interface model of surfactant adsorption onto flat and droplet interfaces. Rheol. Acta 46, 3–11 (2006)CrossRefGoogle Scholar
  56. 56.
    Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759–1779 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Yang, X.: Error analysis of stabilized semi-implicit method of Allen–Cahn equation. Discrete Continuous Dyn. Syst. B 11, 1057–1070 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Yang, X.: Linear, first and second order and unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Yang, X., Feng, J.J., Liu, C., Shen, J.: Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method. J. Comput. Phys. 218, 417–428 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Yang, X., Forest, M.G., Li, H., Liu, C., Shen, J., Wang, Q., Chen, F.: Modeling and simulations of drop pinch-off from liquid crystal filaments and the leaky liquid crystal faucet immersed in viscous fluids. J. Comput. Phys. 236, 1–14 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Yang, X., Forest, M.G., Liu, C., Shen, J.: Shear cell rupture of nematic droplets in viscous fluids. J. Nonnewton. Fluid Mech. 166, 487–499 (2011)CrossRefzbMATHGoogle Scholar
  62. 62.
    Yang, X., Han, D.: Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal equation. J. Comput. Phys. 330, 1116–1134 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Yang, X., Ju, L.: Efficient linear schemes with unconditionally energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. Eng. 315, 691–712 (2017)CrossRefGoogle Scholar
  64. 64.
    Yang, X., Ju, L.: Linear and unconditionally energy stable schemes for the binary fluid-surfactant phase field model. Comput. Methods Appl. Mech. Eng. 318, 1005–1029 (2017)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Yang, X., Mironov, V., Wang, Q.: Modeling fusion of cellular aggregates in biofabrication using phase field theories. J. Theor. Biol. 303, 110–118 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Yang, X., Sun, Y., Wang, Q.: Phase field approach for multicelluar aggregate fusion in biofabrication. J. Biomed. Eng. 135, 71005 (2013)Google Scholar
  67. 67.
    Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three components Cahn–Hilliard phase-field model based on the invariant energy quadratization method. In: M3AS: Mathematical Models and Methods in Applied Sciences (2017) (in press) Google Scholar
  69. 69.
    Yu, H., Yang, X.: Numerical approximations for a phase-field moving contact line model with variable densities and viscosities. J. Comput. Phys. 334, 665–686 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Yue, P., Feng, J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Zhao, J., Li, H., Wang, Q., Yang, X.: A linearly decoupled energy stable scheme for phase-field models of three-phase incompressible flows. J. Sci. Comput. 70, 1367–1389 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Zhao, J., Wang, Q., Yang, X.: Numerical approximations to a new phase field model for immiscible mixtures of nematic liquid crystals and viscous fluids. Comput. Methods Appl. Mech. Eng. 310, 77–97 (2016)CrossRefGoogle Scholar
  73. 73.
    Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Inter. J. Numer. Methods Eng. 110, 279–300 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Zhao, J., Yang, X., Gong, Y., Wang, Q.: A novel linear second order unconditionally energy stable scheme for a hydrodynamic Q-tensor model of liquid crystals. Comput. Methods Appl. Mech. Eng. 318, 803–825 (2017)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Zhao, J., Yang, X., Li, J., Wang, Q.: Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals. SIAM J. Sci. Comput. 38, A3264–A3290 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Zhao, J., Yang, X., Shen, J., Wang, Q.: A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids. J. Comput. Phys. 305, 539–556 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Zhu, J., Chen, L., Shen, J., Tikare, V.: Coarsening kinetics from a variable-mobility Cahn–Hilliard equation: application of a semi-implicit Fourier spectral method. Phys. Rev. E 60(4), 3564–3572 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of South CarolinaColumbiaUSA
  2. 2.Beijing Institute for Scientific and Engineering ComputingBeijing University of TechnologyBeijingChina

Personalised recommendations