Journal of Scientific Computing

, Volume 74, Issue 3, pp 1193–1220 | Cite as

On Solving an Acoustic Wave Problem Via Frequency-Domain Approach and Tensorial Spline Galerkin Method

  • Mohamed Addam
  • Abderrahman Bouhamidi
  • Mohammed Heyouni
Review Paper


In this paper, we introduce a numerical method for solving the dynamical acoustic wave propagation problem with Robin boundary conditions. The method used here is divided into two stages. In the first stage, the equations are transformed, via the Fourier Transform, into an equivalent problem for the frequency variables. This allow us to avoid a discretization of the time variable in the considered system. Existence and uniqueness for the equation in frequency-domain are given. An approximation of the acoustic density in frequency-domain approach is also proposed by using a tensorial spline finite element Galerkin method. In the second stage, a Gauss–Hermite quadrature method is used for the computation of inverse Fourier transform of the frequency acoustic density to obtain the time-dependent solution of the acoustic wave problem. Error estimates in Sobolev spaces and convergence behavior of the presented methods are studied. Several numerical test examples are given to illustrate the performance of the proposed method, effectiveness and good resolution properties for smooth and discontinuous heterogeneous solutions.


Acoustic wave equation Robin boundary condition Fourier transform and wave equation in frequency domain Tensorial spline finite element method Inverse Fourier transform Gauss–Hermite quadrature Error estimate and numerical analysis 


  1. 1.
    Addam, M.: Approximation du Problème de Diffusion en Tomographie Optique et Problème Inverse. Dissertation, LMPA, Université Lille-Nord de France (2010)Google Scholar
  2. 2.
    Addam, M., Bouhamidi, A., Jbilou, K.: A numerical method for one-dimensional diffusion problem using Fourier transform and the B-spline Galerkin method. Appl. Math. Comput. 215, 4067–4079 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Addam, M., Bouhamidi, A., Seaïd, M.: A frequency-domain approach for the \({{\rm P}}_{1}\) approximation of time-dependent radiative transfer. J. Sci. Comput. 62, 623–651 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chu, C., Stoffa, P.: Implicit finite-difference simulations of seismic wave propagation. Geophysics 77(2), T57–T67 (2012)CrossRefGoogle Scholar
  6. 6.
    de Boor, C.: A practical guide to splines. Springer-Verlag, New York (1978)CrossRefzbMATHGoogle Scholar
  7. 7.
    Diwan, G.C., Mohamed, M.S., Seaïd, M., Trevelyan, J., Laghrouche, O.: Mixed enrichment for the finite element method in heterogeneous media. Int. J. Numer. Meth. Engng. 101(1), 54–78 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Geiger, Hugh D., Daley, Pat F.: Finite difference modelling of the full acoustic wave equation in Matlab. CREWES Res. Report. 15, 1–9 (2003)Google Scholar
  9. 9.
    Liu, Y., Sen, M.K.: An implicit staggered-grid finite-difference method for seismic modelling. Geophys. J. Int. 179, 459–474 (2009)CrossRefGoogle Scholar
  10. 10.
    Li, Y.-Q., Zhou, H.-C.: Experimental study on acoustic vector tomography of 2-D flow field in an experiment-scale furnace. Flow Meas. Instrum. 17, 113–122 (2006)CrossRefGoogle Scholar
  11. 11.
    Mattsson, Ken, Ham, Frank, Iaccarino, Gianluca: Stable and accurate wave-propagation in discountinuous media. J. Comput. Phys. 227, 8753–8767 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Munk, W., Worchester, P., Wunsch, C.: Ocean acoustic tomography. Cambridge University Press, (1995)Google Scholar
  13. 13.
    Natterer, F.: Reflection imaging without low frequencies. Inverse Probl. 27, 1–6 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Natterer, F., Wübbeling, F.: A propagation-backpropagation method for ultrasound tomography. Inverse Probl. 11, 1225–1232 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Natterer, F., Sielschott, H., Dorn, O., Dierkes, T., Palamodov, V.: Fréchet derivatives for some bilinear inverse problems. SIAM J. Appl. Math. 62(6), 2092–2113 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Schultz, M.H., Varga, R.S.: \(L\)-splines. Numer. Math. 10, 345–369 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Schultz, M.H.: Splines analysis. Prentice-Hall, Englewood cliffs, New Jersey (1973)Google Scholar
  18. 18.
    Sielschott, H.: Measurement of horizontal flow in a large scale furnace using acoustic vector tomography. Flow Meas. Instrum. 8, 191–197 (1997)CrossRefGoogle Scholar
  19. 19.
    Quarteroni, A., Valli, A.: Numerical approximation of partial differential equation. Springer-Verlag, Berlin (1994)zbMATHGoogle Scholar
  20. 20.
    Sundnes, J., Lines, G.T., Cai, X., Nielson, B.F., Mardal, K.-A., Tveito, A.: Computing the electrical activity in the heart. Monographs in computational science and engineering. Springer-Verlag, Berlin Heidelberg (2010)Google Scholar
  21. 21.
    Das, Sambit, Liao, Wenyuan, Gupta, Aniruch: An efficient fourth-order low dispersive finite difference scheme for a 2-D acoustic wave equation. J. Comput. Appl. Math. 270, 571–583 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Liao, Wenyuan: On the dispersion, stability and accuracy of a compact higher-order finite difference scheme for 3D acoustic wave equation. J. Comput. Appl. Math. 258, 151–167 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ma, Youneng, Jinhua, Yu., Wang, Yuanyuan: An efficient complex-frequency shifted-perfectly matched layer for second-order acoustic wave equation. Int. J. meth. Engng. 97, 130–148 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antenas Propag. 14, 302–307 (1966)CrossRefzbMATHGoogle Scholar
  25. 25.
    Zhao, H., Gao, J., Chen, Z.: Stability and numerical dispersion analysis of finite-difference method for the diffusive-viscous wave equation. Int J. of Num. Anal. Modeling Serie B 5(1–2), 66–78 (2014)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Mohamed Addam
    • 1
  • Abderrahman Bouhamidi
    • 2
  • Mohammed Heyouni
    • 1
  1. 1.ENSAH, Université Mohamed 1erAl HoceimaMaroc
  2. 2.Université Lille-Nord de France, ULCO, L.M.P.ACalais-CedexFrance

Personalised recommendations