Advertisement

Journal of Scientific Computing

, Volume 74, Issue 1, pp 336–374 | Cite as

Numerical Simulation of Microflows Using Moment Methods with Linearized Collision Operator

  • Zhenning Cai
  • Manuel Torrilhon
Article
  • 124 Downloads

Abstract

Hyperbolic moment equations based on Burnett’s expansion of the distribution function are derived for the Boltzmann equation with linearized collision operator. Boundary conditions are equipped for these models, and it is proven that the number of boundary conditions is correct for a large class of moment models. A new second-order numerical scheme is proposed for solving these moment equations, and the new method is suitable for both ordered- and full-moment theories. Numerical experiments are carried out for both one- and two-dimensional problems to show the performance of the moment methods.

Keywords

Hyperbolic moment equations Burnett’s expansion Linearized collision operator Maxwell’s boundary condition 

Notes

Acknowledgements

We thank Dr. Xiaojun Gu and Dr. Anirudh Rana for providing DSMC results for the two-dimensional problems. This research was supported by Humboldt Research Fellowship for Postdoctoral Researchers provided by Alexander von Humboldt Foundation.

References

  1. 1.
    Bird, G.A.: Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford (1994)Google Scholar
  2. 2.
    Burnett, D.: The distribution of molecular velocities and the mean motion in a non-uniform gas. Proc. Lond. Math. Soc. 40(1), 382–435 (1936)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cai, Z.: Numerical simulation of microflows with moment method. In: Karayiannis, T., Konig, C.S., Balabani, S. (eds.) 4th Micro and Nano Flow Conference 2014: Proceedings, p. ID218, Brunel University (2014)Google Scholar
  4. 4.
    Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system. Commun. Pure Appl. Math. 67(3), 464–518 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cai, Z., Fan, Y., Li, R.: A framework on moment model reduction for kinetic equation. SIAM J. Appl. Math. 75(5), 2001–2023 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cai, Z., Li, R.: Numerical regularized moment method of arbitrary order for Boltzmann–BGK equation. SIAM J. Sci. Comput. 32(5), 2875–2907 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cai, Z., Li, R., Qiao, Z.: Globally hyperbolic regularized moment method with applications to microflow simulation. Comput. Fluids 81, 95–109 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cai, Z., Torrilhon, M.: Approximation of the linearized Boltzmann collision operator for hard-sphere and inverse-power-law models. J. Comput. Phys. 295, 617–643 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Choi, C.H., Ivanic, J., Gordon, M.S., Ruedenberg, K.: Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion. J. Chem. Phys. 111(19), 8825–8831 (1999)CrossRefGoogle Scholar
  10. 10.
    Dal Maso, G., LeFloch, P.G., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pure Appl. 74(6), 483–548 (1995)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Dreyer, W.: Maximisation of the entropy in non-equilibrium. J. Phys. A Math. Gen. 20(18), 6505–6517 (1987)CrossRefzbMATHGoogle Scholar
  12. 12.
    Fan, Y., Koellermeier, J., Li, J., Li, R., Torrilhon, M.: Model reduction of kinetic equations by operator projection. J. Stat. Phys. 162(2), 457–486 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Garcia, R.D.M., Siewert, C.E.: The linearized Boltzmann equation with Cercignani–Lampis boundary conditions: basic flow problems in a plane channel. Eur. J. Mech. B Fluids 28(3), 387–396 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Garcia, R.D.M., Siewert, C.E.: The linearized Boltzmann equation with Cercignani–Lampis boundary conditions: heat transfer in a gas confined by two plane-parallel surfaces. Ann. Nucl. Energy 86, 45–54 (2015)CrossRefGoogle Scholar
  15. 15.
    Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Harten, A., Lax, P.D., Van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    John, B., Gu, X., Emerson, D.: Effects of incomplete surface accommodation on non-equilibrium heat transfer in cavity flow: a parallel DSMC study. Comput. Fluids 45(1), 197–201 (2011)CrossRefzbMATHGoogle Scholar
  18. 18.
    John, B., Gu, X.J., Emerson, D.R.: Investigation of heat and mass transfer in a lid-driven cavity under nonequilibrium flow conditions. Numer. Heat Transf. 58, 287–303 (2010)CrossRefGoogle Scholar
  19. 19.
    Kreiss, H.-O.: Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Math. 23(3), 277–298 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5–6), 1021–1065 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Maxwell, J.C.: On stresses in rarefied gases arising from inequalities of temperature. Proc. R. Soc. Lond. 27(185–189), 304–308 (1878)CrossRefzbMATHGoogle Scholar
  22. 22.
    Rana, A.S., Mohammadzadeh, A., Struchtrup, H.: A numerical study of the heat transfer through a rarefied gas confined in a microcavity. Contin. Mech. Thermodyn. 27(3), 433–446 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Struchtrup, H.: Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials. Multiscale Model. Simul. 3(1), 221–243 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Struchtrup, H., Torrilhon, M.: Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys. Fluids 15(9), 2668–2680 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Torrilhon, M.: Convergence study of moment approximations for boundary value problems of the Boltzmann-BGK equation. Commun. Comput. Phys. 18(3), 529–557 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Torrilhon, M., Struchtrup, H.: Boundary conditions for regularized 13-moment-equations for micro-channel-flows. J. Comput. Phys. 227(3), 1982–2011 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yong, W.-A.: Boundary conditions for hyperbolic systems with stiff source terms. Indiana Univ. Math. J. 48(1), 85–114 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Center for Computational Engineering ScienceRWTH Aachen UniversityAachenGermany

Personalised recommendations