Advertisement

Journal of Scientific Computing

, Volume 74, Issue 1, pp 244–266 | Cite as

Positivity for Convective Semi-discretizations

  • Imre Fekete
  • David I. KetchesonEmail author
  • Lajos Lóczi
Article
  • 227 Downloads

Abstract

We propose a technique for investigating stability properties like positivity and forward invariance of an interval for method-of-lines discretizations, and apply the technique to study positivity preservation for a class of TVD semi-discretizations of 1D scalar hyperbolic conservation laws. This technique is a generalization of the approach suggested in Khalsaraei (J Comput Appl Math 235(1): 137–143, 2010). We give more relaxed conditions on the time-step for positivity preservation for slope-limited semi-discretizations integrated in time with explicit Runge–Kutta methods. We show that the step-size restrictions derived are sharp in a certain sense, and that many higher-order explicit Runge–Kutta methods, including the classical 4th-order method and all non-confluent methods with a negative Butcher coefficient, cannot generally maintain positivity for these semi-discretizations under any positive step size. We also apply the proposed technique to centered finite difference discretizations of scalar hyperbolic and parabolic problems.

Keywords

Positivity Runge–Kutta Total variation diminishing Strong stability preserving 

Notes

Acknowledgements

We are indebted to the referees of the manuscript for their suggestions that helped us improving the presentation of the material.

References

  1. 1.
    Bolley, C., Crouzeix, M.: Conservation de la positivité lors de la discrétisation des problémes d’évolution paraboliques. RAIRO Anal. Numér. 12(3), 237–245 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, Chichester (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dahlquist, G., Jeltsch, R.: Reducibility and contractivity of Runge–Kutta methods revisited. Bit Numer. Math. 46, 567–587 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dormand, J.R., Prince, P.J.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fehlberg, E.: Klassische Runge–Kutta-formeln fünfter und siebenter ordnung mit schrittweiten-kontrolle. Computing 4(2), 93–106 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong stability preserving Runge–Kutta and multistep time discretizations. World Scientific Publishing, Hackensack (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Higueras, I.: Strong stability for Runge-Kutta schemes on a class of nonlinear problems. J. Sci. Comput. 57(3), 518–535 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hundsdorfer, W., Koren, B., van Loon, M., Verwer, J.G.: A positive finite-difference advection scheme. J. Comput. Phys. 117(1), 35–46 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics, vol. 33. Springer, Berlin (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ketcheson, D.I., Robinson, A.C.: On the practical importance of the SSP property for Runge–Kutta time integrators for some common Godunov-type schemes. Int. J. Numer. Methods Fluids 48(3), 271–303 (2005)CrossRefzbMATHGoogle Scholar
  12. 12.
    Khalsaraei, M.M.: An improvement on the positivity results for 2-stage explicit Runge–Kutta methods. J. Comput. Appl. Math. 235(1), 137–143 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Khalsaraei, M.M.: Positivity of an explicit Runge–Kutta method. Ain Shams Eng. J. 6(4), 1217–1223 (2015)CrossRefGoogle Scholar
  14. 14.
    Koren, B.: A robust upwind discretization method for advection, diffusion and source terms. In: Numerical methods for advection-diffusion problems, volume 45 of Notes Numer. Fluid Mech., pp. 117–138. Vieweg, Braunschweig (1993)Google Scholar
  15. 15.
    Kraaijevanger, J.F.B.M.: Contractivity of Runge–Kutta methods. BIT Numer. Math. 31(3), 482–528 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ralston, A.: Runge–Kutta methods with minimum error bounds. Math. Comput. 16, 431–437 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Roe, P.L.: Characteristic-based schemes for the Euler equations. In: Annual Review of Fluid Mechanics, vol. 18, pp. 337–365. Annual Reviews, Palo Alto, CA (1986)Google Scholar
  18. 18.
    Ruuth, S. J., Spiteri, R. J.: Two barriers on strong-stability-preserving time discretization methods. In: Proceedings of the 5th International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol. 17, pp. 211–220 (2002)Google Scholar
  19. 19.
    van Leer, B.: Towards the ultimate conservative difference scheme. III: upstream-centered finite-difference schemes for ideal compressible flow. IV: a new approach to numerical convection. J. Comput. Phys. 23, 263–299 (1977)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Imre Fekete
    • 1
  • David I. Ketcheson
    • 1
    Email author
  • Lajos Lóczi
    • 1
  1. 1.Division of Computer, Electrical, and Mathematical Sciences & EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia

Personalised recommendations