Advertisement

Journal of Scientific Computing

, Volume 74, Issue 1, pp 23–48 | Cite as

A Posteriori Error Estimates of Two-Grid Finite Element Methods for Nonlinear Elliptic Problems

  • Chunjia Bi
  • Cheng WangEmail author
  • Yanping Lin
Article

Abstract

In this article, we study the residual-based a posteriori error estimates of the two-grid finite element methods for the second order nonlinear elliptic boundary value problems. Computable upper and lower bounds on the error in the \(H^1\)-norm are established. Numerical experiments are also provided to illustrate the performance of the proposed estimators.

Keywords

Two-grid finite element method Nonlinear elliptic problems A posteriori error estimates 

Mathematics Subject Classification

65N15 65N30 

Notes

Acknowledgements

The authors would like to thank an anonymous referee for his (her) valuable suggestions leading to an improvement of this article.

References

  1. 1.
    Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)zbMATHGoogle Scholar
  2. 2.
    Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, Chichester (2000)CrossRefzbMATHGoogle Scholar
  3. 3.
    Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Axelsson, O., Layton, W.: A two-level discretization of nonlinear boundary value problems. SIAM J. Numer. Anal. 33, 2359–2374 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Babuška, I., Aziz, A.K.: Foundations of the finite element method. In: Aziz, A.K. (ed.) The Mathmetical Foundation of the Finite Element Method with Appications to Partial Differential Equations, pp. 3–362. Academic Press, New York (1972)CrossRefGoogle Scholar
  6. 6.
    Babuška, I., Strouboulis, T.: The Finite Element Method and its Reliability. Clarendon Press, Oxford (2001)zbMATHGoogle Scholar
  7. 7.
    Baker, G.A.: Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31, 45–59 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bangerth, W., and Rannacher, R.: Adaptive Finite Element Methods for Differential Equations, Lectures in Mathematics. ETH-Z\(\ddot{\rm u}\)rich, Birkh\(\ddot{\rm a}\)user, Basel (2003)Google Scholar
  9. 9.
    Bergam, A., Mghazli, Z., Verfürth, R.: Estimations a posteriori d’un schéma de volumes finis pour un problème non linéaire. Numer. Math. 95, 599–624 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bi, C., Ginting, V.: Two-grid finite volume element method for linear and nonlinear elliptic problems. Numer. Math. 108, 177–198 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bi, C., Ginting, V.: A residual-type a posteriori error estimate of finite volume element method for a quasi-linear elliptic problem. Numer. Math. 114, 107–132 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bi, C., Ginting, V.: Two-grid discontinuous Galerkin method for quasi-linear elliptic problems. J. Sci. Comput. 49, 311–331 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bi, C., Ginting, V.: A posteriori error estimates of discontinuous Galerkin method for nonmonotone quasi-linear elliptic problems. J. Sci. Comput. 55, 659–687 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bi, C., Ginting, V.: Global superconvergence and a posteriori error estimates of finite element method for second-order quasilinear elliptic problems. J. Comput. Appl. Math. 260, 78–90 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bi, C., Ginting, V.: Finite volume element method for second-order quasilinear elliptic problems. IMA J. Numer. Anal. 31, 1062–1089 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bi, C., Wang, C.: A posteriori error estimates of finite volume element method for second-order quasilinear elliptic problems. Inter. J. Numer. Anal. Model. 13, 22–40 (2016)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Bi, C., Wang, C., Lin, Y.: A posteriori error estimates of \(hp\)-discontinuous Galerkin method for strongly nonlinear elliptic problems. Comput. Meth. Appl. Mech. Eng. 297, 140–166 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Bi, C., Wang, C., Lin, Y.: Pointwise error estimates and two-grid algorithms of discontinuous Galerkin method for strongly nonlinear elliptic problems. J. Sci. Comput. 67, 153–175 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Brenner, S., Scott, R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol. 15, 2nd edn. Springer, New York (2002)Google Scholar
  20. 20.
    Carstensen, C., Lazarov, R., Tomov, S.: Explicit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer. Anal. 42, 2496–2521 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Casas, E., Dhamo, V.: Error estimates for the numerical approximation of a quasilinear Neumann problem under minimal regularity of the data. Numer. Math. 117, 115–145 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Chatzipantelidis, P., Ginting, V., Lazarov, R.: A finite volume element method for a nonlinear elliptic problem. Numer. Linear Algebra Appl. 12, 515–546 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Chen, Z.: On the existence, uniqueness and convergence of nonlinear mixed finite element methods. Mat. Apl. Comput. 8, 241–258 (1989)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  25. 25.
    Dawson, C.N., Wheeler, M.F., Woodward, C.S.: A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35, 435–452 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Demlow, A.: Localized pointwise a posteriori error estimates for gradients of piecewise linear finite element approximations to second-order quasilinear elliptic problems. SIAM J. Numer. Anal. 44, 494–514 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Douglas Jr., J., Dupont, T.: A Galerkin method for a nonlinear Dirichlet problem. Math. Comput. 29, 689–696 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Gudi, T., Nataraj, N., Pani, A.K.: hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems. Numer. Math. 109, 233–268 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Gudi, T., Nataraj, N., Pani, A.K.: An hp-local discontinuous Galerkin method for some quasi-linear elliptic boundary value problems of non-monotone type. Math. Comput. 77, 731–756 (2008)CrossRefzbMATHGoogle Scholar
  30. 30.
    Gudi, T., Pani, A.K.: Discontinuous Galerkin methods for quasi-linear elliptic problems of nonmonotone type. SIAM J. Numer. Anal. 45, 163–192 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Guo, H., Zhang, Z., Zhao, R.: Superconvergent two-grid methods for elliptic eigenvalue problems. J. Sci. Comput. 70, 125–148 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Liu, L., Křížek, M., Neittaanmäki, P.: Higher order finite element approximation of a quasilinear elliptic boundary value problem of a nonmonotone type. Appl. Math. 41, 467–478 (1996)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Liu, L., Liu, T., Křížek, M., Lin, T., Zhang, S.H.: Global superconvergence and a posteriori error estimators of the finite element method for a quasi-linear elliptic boundary value problem of nonmonotone type. SIAM J. Numer. Anal. 42, 1729–1744 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Marion, M., Xu, J.: Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32, 1170–1184 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Milner, F.A.: Mixed finite element methods for quasilinear second-order elliptic problems. Math. Comput. 44, 1–22 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Neittaanmäki, P., Repin, S.: Reliable Methods for Mathematical Modelling. Error Control and a Posteriori Estimates. Elsevier, New York (2004)zbMATHGoogle Scholar
  37. 37.
    Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary condition. Math. Comput. 54, 483–493 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Utnes, T.: Two-grid finite element formulations of the incompressible Navier–Stokes equation. Commun. Numer. Methods Eng. 34, 675–684 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Verfürth, R.: A posteriori error estimates for nonlinear problems. Finite element discretization of elliptic equations. Math. Comput. 62, 445–475 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester (1996)zbMATHGoogle Scholar
  41. 41.
    Verfürth, R.: A posteriori error estimates for nonlinear problems. \(L^r(0, T;L^{\rho }(\Omega ))\) error estimates for finite element discretizations of parabolic equations. Math. Comput. 67, 1335–1360 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Wu, L., Allen, M.B.: Two-grid method for mixed finite-element solution of coupled reaction-diffusion systems. Numer. Methods PDE 15, 589–604 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Xu, J.: A new class of iterative methods for nonselfadjoint or indefinite elliptic problems. SIAM J. Numer. Anal. 29, 303–319 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Xu, J.: A novel two-grid method for semi-linear equations. SIAM J. Sci. Comput. 15, 231–237 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70, 17–25 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of MathematicsYantai UniversityShandongChina
  2. 2.School of Mathematical SciencesTongji UniversityShanghaiChina
  3. 3.Department of Applied MathematicsThe Hong Kong Polytechnic UniversityHung HomChina

Personalised recommendations