Advertisement

Journal of Scientific Computing

, Volume 72, Issue 3, pp 1146–1168 | Cite as

A Non-oscillatory Multi-Moment Finite Volume Scheme with Boundary Gradient Switching

  • Xi Deng
  • Ziyao Sun
  • Bin Xie
  • Kensuke Yokoi
  • Chungang ChenEmail author
  • Feng Xiao
Article
  • 379 Downloads

Abstract

In this work we propose a new formulation for high-order multi-moment constrained finite volume (MCV) method. In the one-dimensional building-block scheme, three local degrees of freedom (DOFs) are equidistantly defined within a grid cell. Two candidate polynomials for spatial reconstruction of third-order are built by adopting one additional constraint condition from the adjacent cells, i.e. the DOF at middle point of left or right neighbour. A boundary gradient switching (BGS) algorithm based on the variation-minimization principle is devised to determine the spatial reconstruction from the two candidates, so as to remove the spurious oscillations around the discontinuities. The resulted non-oscillatory MCV3-BGS scheme is of fourth-order accuracy and completely free of case-dependent ad hoc parameters. The widely used benchmark tests of one- and two-dimensional scalar and Euler hyperbolic conservation laws are solved to verify the performance of the proposed scheme in this paper. The MCV3-BGS scheme is very promising for the practical applications due to its accuracy, non-oscillatory feature and algorithmic simplicity.

Keywords

Multi-moment method Finite volume method Variation-minimization principle Non-oscillatory scheme High-order scheme Local reconstruction 

References

  1. 1.
    Chen, C.G., Xiao, F.: An adaptive multimoment global model on a cubed sphere. Mon. Weather Rev. 139, 523–548 (2011)CrossRefGoogle Scholar
  2. 2.
    Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Fan, P., Shen, Y., Tian, B., Yang, C.: A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. J. Comput. Phys. 269, 329–354 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Applied Mathematical Sciences, vol. 118. Springer, New York (1996)CrossRefzbMATHGoogle Scholar
  6. 6.
    Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–303 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis and Applications. Springer, New York (2008)CrossRefzbMATHGoogle Scholar
  8. 8.
    Huang, C.S., Xiao, F., Arbogast, T.: Fifth order multi-moment weno schemes for hyperbolic conservation laws. J. Sci. Comput. 64(2), 477–507 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ii, S., Xiao, F.: CIP/multi-moment finite volume method for Euler equations, a semiLagrangian characteristic formulation. J. Comput. Phys. 222, 849–871 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ii, S., Xiao, F.: High order multi-moment constrained finite volume method. Part I: basic formulation. J. Comput. Phys. 228, 3669–3707 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Li, X.L., Chen, C.G., Shen, X.S., Xiao, F.: A multi-moment constrained finite-volume model for nonhydrostatic atmospheric dynamics. Mon. Weather Rev. 141, 1216–1240 (2013)CrossRefGoogle Scholar
  13. 13.
    Onodera, N., Aoki, T., Yokoi, K.: A fully conservative high-order upwind multi-moment method using moments in both upwind and downwind cells. Int. J. Numer. Methods Fluids (2016). doi: 10.1002/fld.4228 MathSciNetGoogle Scholar
  14. 14.
    Qiu, J.X., Shu, C.W.: Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case. J. Comput. Phys. 193, 115–135 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Qiu, J.X., Shu, C.W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Shu, C.W., Osher, O.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shockcapturing schemes. J. Comput. Phys. 77, 439–471 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sod, G.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Spiteri, R., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sun, Y., Wang, Z.J., Liu, Y.: High-order multidomain spectral difference method for the Navier–Stokes equations on unstructured hexahedral grids. Commun. Comput. Phys. 2, 310–333 (2007)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Sun, Z.Y., Teng, H.H., Xiao, F.: A slope constrained 4th order multi-moment finite volume method with WENO limiter. Commun. Comput. Phys. 18, 901–930 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd edn. Springer, Berlin (2009)CrossRefzbMATHGoogle Scholar
  23. 23.
    Wang, Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation. J. Comput. Phys. 178, 210–251 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Xiao, F., Yabe, T.: Completely conservative and oscillationless semi-Lagrangian schemes for advection transportation. J. Comput. Phys. 170, 498–522 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Xie, B., Ii, S., Ikebata, A., Xiao, F.: A multi-moment finite volume method for incompressible Navier–Stokes equations on unstructured grids: volume-average/point-value formulation. J. Comput. Phys. 227, 138–162 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Xie, B., Xiao, F.: Two and three dimensional multi-moment finite volume solver for incompressible Navier–Stokes equations on unstructured grids with arbitrary quadrilateral and hexahedral elements. Comput. Fluids 227, 40–54 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yabe, T., Aoki, T.: A universal solver for hyperbolic equations by cubic-polynomial interpolation I. One-dimensional solver. Comput. Phys. Commun. 66, 219–232 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Yabe, T., Xiao, F., Utsumi, T.: The constrained interpolation profile method for multiphase analysis. J. Comput. Phys. 169, 556–593 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zhong, X., Shu, C.W.: A simple weighted essentially nonoscillatory limiter for Runge–Kutta discontinuous Galerkin methods. J. Comput. Phys. 232, 397–415 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Xi Deng
    • 1
  • Ziyao Sun
    • 1
  • Bin Xie
    • 1
  • Kensuke Yokoi
    • 2
  • Chungang Chen
    • 3
    Email author
  • Feng Xiao
    • 1
  1. 1.Department of Mechanical EngineeringTokyo Institute of TechnologyYokohamaJapan
  2. 2.School of EngineeringCardiff UniversityCardiffUK
  3. 3.School of Human Settlement and Civil Engineering & State Key Laboratory for Strength and Vibration of Mechanical StructuresXi’an Jiaotong UniversityXi’anChina

Personalised recommendations