Journal of Scientific Computing

, Volume 72, Issue 2, pp 542–567 | Cite as

eXtended Hybridizable Discontinuous Galerkin with Heaviside Enrichment for Heat Bimaterial Problems

  • Ceren Gürkan
  • Martin Kronbichler
  • Sonia Fernández-MéndezEmail author


A novel strategy for the hybridizable discontinuous Galerkin (HDG) solution of heat bimaterial problems is proposed. It is based on eXtended finite element philosophy, together with a level set description of interfaces. Heaviside enrichment on cut elements and cut faces is used to represent discontinuities across the interface. A suitable weak form for the HDG local problem on cut elements is derived, accounting for the discontinuous enriched approximation, and weakly imposing continuity or jump conditions over the material interface. The computational mesh is not required to fit the interface, simplifying and reducing the cost of mesh generation and, in particular, avoiding continuous remeshing for evolving interfaces. Numerical experiments demonstrate that X-HDG keeps the accuracy of standard HDG methods in terms of optimal convergence and superconvergence.


Interface Bimaterial Hybridizable discontinuous Galerkin (HDG) High-order Level-sets X-FEM X-HDG 



This work was supported by the DAFOH2 Project (Ministerio de Economia y Competitividad, MTM2013-46313-R), the Erasmus Mundus Joint Doctorate SEED Project (European Comission, 2013-1436/001-001-EMJD) and the Catalan Goverment (Generalitat de Catalunya, 2009SGR875). The authors also acknowledge Ms. Esther Sala-Lardies (Universitat Politècnica de Catalunya) for letting them use her library for numerical integration in cut elements, and Prof. John E. Dolbow (Duke University) for the interesting discussions they had on the competitiveness of X-HDG in front of standard X-FEM.


  1. 1.
    Assêncio, D.C., Teran, J.M.: A second order virtual node algorithm for stokes flow problems with interfacial forces, discontinuous material properties and irregular domains. J. Comput. Phys. 250, 77–105 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cheng, K.W., Fries, T.P.: Higher-order XFEM for curved strong and weak discontinuities. Int. J. Numer. Methods Eng. 82(5), 564–590 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cockburn, B.: Discontinuous Galerkin methods for computational fluid dynamics. In: Encyclopedia of Computational Mechanics, vol. 3 (Fluids), chap. 4. Wiley, New York (2004)Google Scholar
  4. 4.
    Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77(264), 1887–1916 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.J.: Analysis of HDG methods for Stokes flow. Math. Comput. 80(274), 723–760 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cockburn, B., Qiu, W., Shi, K.: Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comput. 81(279), 1327–1353 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dong, H., Wang, B., Xie, Z., Wang, L.L.: An unfitted hybridizable discontinuous Galerkin method for the poisson interface problem and its error analysis. IMA J. Numer. Anal. 37(1), 444–476 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dreau, K., Chevaugeon, N., Moës, N.: Studied X-FEM enrichment to handle material interfaces with higher order finite element. Comput. Methods Appl. Mech. Eng. 199(29–32), 1922–1936 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fries, T.P.: A corrected XFEM approximation without problems in blending elements. Int. J. Numer. Methods Eng. 75(5), 503–532 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fries, T.P., Belytschko, T.: The extended/generalized finite element method: An overview of the method and its applications. Int. J. Numer. Methods Eng. 84(3), 253–304 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Giorgiani, G., Fernández-Méndez, S., Huerta, A.: Hybridizable discontinuous Galerkin p-adaptivity for wave propagation problems. Int. J. Numer. Methods Fluids 72(12), 1244–1262 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Giorgiani, G., Modesto, D., Fernández-Méndez, S., Huerta, A.: High-order continuous and discontinuous Galerkin methods for wave problems. Int. J. Numer. Methods Fluids 73(10), 883–903 (2013)MathSciNetGoogle Scholar
  14. 14.
    Gürkan, C., Sala-Lardies, E., Kronbichler, M., Fernández-Méndez, S.: eXtended hybridizable discontinous Galerkin (X-HDG) for void problems. J. Sci. Comput. 66(3), 1313–1333 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche method for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191, 5537–5552 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hesthaven, J., Warburton, T.: Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181(1), 186–221 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Huerta, A., Angeloski, A., Roca, X., Peraire, J.: Efficiency of high-order elements for continuous and discontinuous Galerkin methods. Int. J. Numer. Methods Eng. 96(9), 529–560 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Huynh, L.T., Nguyen, N., Peraire, J., Khoo, B.: A high-order hybridizable discontinuous Galerkin method for elliptic interface problems. Int. J. Numer. Meth. Eng. 93(2), 183–200 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kirby, R., Sherwin, S.J., Cockburn, B.: To CG or to HDG: a comparative study. J. Sci. Comput. 51(1), 183–212 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Legrain, G., Chevaugeon, N., Drau, K.: High order X-FEM and levelsets for complex microstructures: uncoupling geometry and approximation. Comput. Methods Appl. Mech. Eng. 241244, 172–189 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Montlaur, A., Fernández-Méndez, S., Huerta, A.: Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations. Int. J. Numer. Methods Fluids 57(9), 1071–1092 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nguyen, N., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199(9–12), 582–597 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. J. Comput. Phys. 230(4), 1147–1170 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Peraire, J., Persson, P.O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30(4), 1806–1824 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wang, B., Khoo, B.: Hybridizable discontinuous Galerkin method (HDG) for Stokes interface flow. J. Comput. Phys. 247, 262–278 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Yakovlev, S., Moxey, D., Kirby, R.M., Sherwin, S.J.: To CG or to HDG: a comparative study in 3D. J. Sci. Comput. 67(1), 192–220 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Laboratori de Càlcul Numèric (LaCàN)Universitat Politècnica de Catalunya (UPC)BarcelonaSpain
  2. 2.Institute for Computational MechanicsTechnical University of MunichGarchingGermany

Personalised recommendations