Journal of Scientific Computing

, Volume 72, Issue 1, pp 422–441

# Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations

• Weiping Bu
• Aiguo Xiao
• Wei Zeng
Article

## Abstract

In this paper, a class of distributed-order time fractional diffusion equations (DOFDEs) on bounded domains is considered. By L1 method in temporal direction, a semi-discrete variational formulation of DOFDEs is obtained firstly. The stability and convergence of this semi-discrete scheme are discussed, and the corresponding fully discrete finite element scheme is investigated. To improve the convergence rate in time, the weighted and shifted Grünwald difference method is used. By this method, another finite element scheme for DOFDEs is obtained, and the corresponding stability and convergence are considered. And then, as a supplement, a higher order finite difference scheme of the Caputo fractional derivative is developed. By this scheme, an approach is suggested to improve the time convergence rate of our methods. Finally, some numerical examples are given for verification of our theoretical analysis.

## Keywords

Distributed-order time fractional diffusion equation Finite element method Finite difference method Stability Convergence

## Notes

### Acknowledgements

This research is supported by the National Natural Science Foundation of China (Nos. 11671343, 11601460), the Research Foundation of Education Commission of Hunan Province of China (No. 16C1540), and the Starting Research Fund and Scientific Research Program from Xiangtan University.

## References

1. 1.
Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
2. 2.
Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)
3. 3.
Meerschaert, M.M., Zhang, Y., Baeumer, B.: Particle tracking for fractional diffusion with two time scales. Comput. Math. Appl. 59, 1078–1086 (2010)
4. 4.
Cascaval, R.C., Eckstein, E.C., Frota, C.L., Goldstein, J.A.: Fractional telegraph equations. J. Math. Anal. Appl. 276, 145–159 (2002)
5. 5.
Liu, F., Meerschaert, M.M., Mcgough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 9–25 (2013)
6. 6.
Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, A2976–A3000 (2013)
7. 7.
Ren, J., Sun, Z.Z.: Efficient numerical solution of the multi-term time fractional diffusion-wave equation. East Asian J. Appl. Math. 5, 1–28 (2015)
8. 8.
Li, C., Zhao, Z., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)
9. 9.
Jiang, Y., Ma, J.: Moving finite element methods for time fractional partial differential equations. Sci. China Math. 56, 1287–1300 (2013)
10. 10.
Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2014)
11. 11.
Bu, W., Liu, X., Tang, Y., Yang, J.: Finite element multigrid method for multi-term time fractional advection diffusion equations. Int. J. Model. Simul. Sci. Comput. 6, 1540001 (2015)
12. 12.
Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)
13. 13.
Mainardi, F., Pagnini, G., Gorenflo, R.: Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187, 295–305 (2007)
14. 14.
Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340, 252–281 (2008)
15. 15.
Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed-order diffusion-wave equation. I. Volterra-type equation. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 465, 1869–1891 (2009)
16. 16.
Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed-order diffusion-wave equation II. Applications of Laplace and Fourier transformations. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 465, 1893–1917 (2009)
17. 17.
Meerschaert, M.M., Nane, E., Vellaisamy, P.: Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379, 216–228 (2011)
18. 18.
Gorenflo, R., Luchko, Y., Stojanović, M.: Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 16, 297–316 (2013)
19. 19.
Ansari, A., Moradi, M.: Exact solutions to some models of distributed-order time fractional diffusion equations via the Fox H functions. SCIENCEASIA 39S, 57–66 (2013)
20. 20.
Li, Z., Luchko, Y., Yamamoto, M.: Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations. Fract. Calc. Appl. Anal. 17, 1114–1136 (2014)
21. 21.
Jia, J., Peng, J., Li, K.: Well-posedness of abstract distributed-order fractional diffusion equations. Commun. Pur. Appl. Anal. 13, 605–621 (2014)
22. 22.
Hu, X., Liu, F., Anh, V., Turner, I.: A numerical investigation of the time distributed-order diffusion model. ANZIAM J. 55, 464–478 (2014)
23. 23.
Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 80, 825–838 (2015)
24. 24.
Ye, H., Liu, F., Anh, V.: Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J. Comput. Phys. 298, 652–660 (2015)
25. 25.
Alikhanov, A.A.: Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation. Appl. Math. Comput. 268, 12–22 (2015)
26. 26.
Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction-diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)
27. 27.
Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. J. Sci. Comput. 66, 1281–1321 (2016)
28. 28.
Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes with the extrapolation method for the two-dimensional distributed-order differential equations. Comput. Math. Appl. 69, 926–948 (2015)
29. 29.
Li, X., Wu, B.: A numerical method for solving distributed order diffusion equations. Appl. Math. Lett. 53, 92–99 (2016)
30. 30.
Jin, B., Lazarov, R., Sheen, D., Zhou, Z.: Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data. Fract. Calc. Appl. Anal. 19, 69–93 (2015)
31. 31.
Bu, W., Tang, Y., Wu, Y., Yang, J.: Finite difference/finite element method for two-dimensional space and time fractional Bloch–Torrey equations. J. Comput. Phys. 293, 264–279 (2015)
32. 32.
Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1984)
33. 33.
Tian, W.Y., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 84, 1703–1727 (2015)
34. 34.
Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)
35. 35.
Bu, W., Tang, Y., Yang, J.: Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. J. Comput. Phys. 276, 26–38 (2014)