Advertisement

Journal of Scientific Computing

, Volume 72, Issue 1, pp 291–313 | Cite as

Explicit and Implicit TVD Schemes for Conservation Laws with Caputo Derivatives

  • Jian-Guo Liu
  • Zheng Ma
  • Zhennan ZhouEmail author
Article
  • 273 Downloads

Abstract

In this paper, we investigate numerical approximations of the scalar conservation law with the Caputo derivative, which introduces the memory effect. We construct the first order and the second order explicit upwind schemes for such equations, which are shown to be conditionally \(\ell ^1\) contracting and TVD. However, the Caputo derivative leads to the modified CFL-type stability condition, \( (\Delta t)^{\alpha } = O(\Delta x)\), where \(\alpha \in (0,1]\) is the fractional exponent in the derivative. When \(\alpha \) is small, such strong constraint makes the numerical implementation extremely impractical. We have then proposed the implicit upwind scheme to overcome this issue, which is proved to be unconditionally \(\ell ^1\) contracting and TVD. Various numerical tests are presented to validate the properties of the methods and provide more numerical evidence in interpreting the memory effect in conservation laws.

Keywords

TVD schemes Conservation law Caputo derivative Memory effect 

Notes

Acknowledgements

The authors would like to thank Jianfeng Lu for helpful discussions. J. Liu is partially supported by KI-Net NSF RNMS Grant No. 1107444 and NSF Grant DMS 1514826. Z. Zhou is partially supported by RNMS11-07444 (KI-Net). Z. Ma is partially supported by the NSF Grant DMS–1522184, DMS–1107291: RNMS (KI-Net) and Natural Science Foundation of China Grant 91330203.

References

  1. 1.
    Allen, M., Caffarelli, L., Vasseur, A.: Porous medium flow with both a fractional potential pressure and fractional time derivative. arXiv preprint (2015)Google Scholar
  2. 2.
    Cao, J., Xu, C.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comput. Phys. 238, 154–168 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Caputo, M.: Diffusion of fluids in porous media with memory. Geothermics 28(1), 113–130 (1999)CrossRefGoogle Scholar
  4. 4.
    del Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11(8), 3854–3864 (2004)CrossRefGoogle Scholar
  5. 5.
    del Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Nondiffusive transport in plasma turbulence: a fractional diffusion approach. Phys. Rev. Lett. 94(6), 065003 (2005)CrossRefGoogle Scholar
  6. 6.
    Gao, G., Sun, H.: Three-point combined compact alternating direction implicit difference schemes for two-dimensional time-fractional advection-diffusion equations. Commun. Comput. Phys. 17(02), 487–509 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kumar, P., Agrawal, O.P.: An approximate method for numerical solution of fractional differential equations. Signal Process. 86(10), 2602–2610 (2006). Special Section: Fractional Calculus Applications in Signals and SystemsCrossRefzbMATHGoogle Scholar
  8. 8.
    Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205(2), 719–736 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lin, R., Liu, F.: Fractional high order methods for the nonlinear fractional ordinary differential equation. Nonlinear Anal. 66(4), 856–869 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)Google Scholar
  11. 11.
    Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191(1), 12–20 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Lv, C., Xu, C.: Improved error estimates of a finite difference/spectral method for time-fractional diffusion equations. Int. J. Numer. Anal. Model. 12(2), 384–400 (2015)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 229(1), 1–77 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Shu, C.: A numerical method for systems of conservation laws of mixed type admitting hyperbolic flux splitting. J. Comput. Phys. 100(2), 424–429 (1992)CrossRefzbMATHGoogle Scholar
  15. 15.
    Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tsai, R., Cheng, L., Osher, S., Zhao, H.: Fast sweeping algorithms for a class of hamilton-jacobi equations. SIAM J. Numer. Anal. 41(2), 673–694 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wang, C., Liu, J.: Positivity property of second-order flux-splitting schemes for the compressible euler equations. Discret. Contin. Dyn. Syst. Ser. B 3(2), 201–228 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Xu, D.: Alternating direction implicit galerkin finite element method for the two-dimensional time fractional evolution equation. Numer. Math. Theory Methods Appl. 7(01), 41–57 (2014)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371(6), 461–580 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zayernouri, M., Karniadakis, G.E.: Fractional Sturm-Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252(C), 495–517 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model. Comput. Math. Appl. 66(5), 693–701 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhao, X., Sun, Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293(C), 184–200 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Department of PhysicsDuke UniversityDurhamUSA
  2. 2.Department of MathematicsShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Department of MathematicsDuke UniversityDurhamUSA

Personalised recommendations