Journal of Scientific Computing

, Volume 71, Issue 3, pp 1212–1237 | Cite as

A New Family of Regularized Kernels for the Harmonic Oscillator

  • Benjamin W. Ong
  • Andrew J. Christlieb
  • Bryan D. Quaife
Article
  • 131 Downloads

Abstract

In this paper, a new two-parameter family of regularized kernels is introduced, suitable for applying high-order time stepping to N-body systems. These high-order kernels are derived by truncating a Taylor expansion of the non-regularized kernel about \((r^2+\epsilon ^2)\), generating a sequence of increasingly more accurate kernels. This paper proves the validity of this two-parameter family of regularized kernels, constructs error estimates, and illustrates the benefits of using high-order kernels through numerical experiments.

Keywords

Kernel regularization Singular integrals N-body systems High-order time stepping 

Mathematics Subject Classification

65B99 65P10 70-08 70F10 70H05 

Notes

Acknowledgements

The authors would like to thank Robert Krasny, Keith Cartwright, John Verboncoeur, John Luginsland, Matthew Bettencourt, and Andrew Greenwood for their insightful discussions regarding this work, as well as anonymous referees who have made valuable suggestions to improve the presentation of this manuscript.

References

  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC (1964)Google Scholar
  2. 2.
    Bate, R.R., Mueller, D.D., White, J.E.: Fundamentals of Astrodynamics. Dover Publications (1971)Google Scholar
  3. 3.
    Beale, J.: A grid-based boundary integral method for elliptic problems in three dimensions. SIAM J. Numer. Anal. 42(2), 599–620 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Christlieb, A., Krasny, R., Verboncoeur, J.: A treecode algorithm for simulating electron dynamics in a Penning–Malmberg trap. Comput. Phys. Commun. 164(1–3), 306–310 (2004a)CrossRefMATHGoogle Scholar
  5. 5.
    Christlieb, A., Krasny, R., Verboncoeur, J.: Efficient particle simulation of a virtual cathode using a grid-free treecode Poisson solver. IEEE Trans. Plasma Sci. 32(2 Part 1), 384–389 (2004b)CrossRefGoogle Scholar
  6. 6.
    Christlieb, A., Krasny, R., Verboncoeur, J., Emhoff, J., Boyd, I.: Grid-free plasma simulation techniques. IEEE Trans. Plasma Sci. 34(2 Part 1), 149–165 (2006)CrossRefGoogle Scholar
  7. 7.
    Cortez, R.: The method of regularized stokeslets. SIAM J. Sci. Comput. 23(4), 1204–1225 (2001)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cortez, R., Minion, M.: The blob projection method for immersed boundary problems. J. Comput. Phys. 161(2), 428–453 (2000). doi:10.1006/jcph.2000.6502. http://www.sciencedirect.com/science/article/pii/S0021999100965021
  9. 9.
    Faou, E., Hairer, E., Pham, T.L.: Energy conservation with non-symplectic methods: examples and counter-examples. BIT Numer. Math. 44(4), 699–709 (2004). doi:10.1007/s10543-004-5240-6 MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Forest, E., Ruth, R.D.: Fourth-order symplectic integration. Phys. D 43(1), 105–117 (1990). doi:10.1016/0167-2789(90)90019-L MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gibbon, P., Speck, R., Karmakar, A., Arnold, L., Frings, W., Berberich, B., Reiter, D., Masek, M.: Progress in mesh-free plasma simulation with parallel tree codes. IEEE Trans. Plasma Sci. 38(9), 2367–2376 (2010)CrossRefGoogle Scholar
  12. 12.
    Hejlesen, M.M., Rasmussen, J.T., Chatelain, P., Walther, J.H.: A high order solver for the unbounded Poisson equation. J. Comput. Phys. 252, 458–467 (2013). doi:10.1016/j.jcp.2013.05.050 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Hosseini, B., Nigam, N., Stockie, J.M.: On regularizations of the Dirac delta distribution. J. Comput. Phys. 305, 423–447 (2016)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1999)MATHGoogle Scholar
  15. 15.
    Krasny, R.: Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65(2), 292–313 (1986)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Krasny, R.: Computation of vortex sheet roll-up in the Trefftz plane. J. Fluid Mech. 184, 123–155 (1987)CrossRefGoogle Scholar
  17. 17.
    Leonard, A.: Vortex methods for flow simulation. J. Comput. Phys. 37(3), 289–335 (1980). doi:10.1016/0021-9991(80)90040-6 MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Li, P., Johnston, H., Krasny, R.: A cartesian treecode for screened coulomb interactions. J. Comput. Phys. 228(10), 3858–3868 (2009). doi:10.1016/j.jcp.2009.02.022. http://www.sciencedirect.com/science/article/pii/S0021999109000916
  19. 19.
    Lindsay, K., Krasny, R.: A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow. J. Comput. Phys. 172(2), 879–907 (2001)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Majda, A., Majda, G., Zheng, Y.: Concentrations in the one-dimensional Vlasov–Poisson equations, I: temporal development and non-unique weak solutions in the single component case. Phys. D 74(3–4), 268–300 (1994)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Rostami, M.W., Olson, S.D.: Kernel-independent fast multipole method within the framework of regularized stokeslets. J. Fluids Struct. (2015). Under reviewGoogle Scholar
  22. 22.
    Ruth, R.D.: A canonical integration technique. IEEE Trans. Nucl. Sci. 30(4), 2669–2671 (1983). doi:10.1109/TNS.1983.4332919 CrossRefGoogle Scholar
  23. 23.
    Salmon, J., Warren, M.: Skeletons from the treecode closet. J. Comput. Phys. 111(1), 136–155 (1994)CrossRefMATHGoogle Scholar
  24. 24.
    Simó, C.: New families of solutions in N-body problems. In: Casacuberta, C., Miro-Roig, R.M., Verdera, J., Xambo-Descamps, S. (eds.) European Congress of Mathematics. Progress in Mathematics, vol. 201, pp. 101–115. Birkhäuser, Basel (2001)Google Scholar
  25. 25.
    Wee, D., Marzouk, Y.M., Schlegel, F., Ghoniem, A.F.: Convergence characteristics and computational cost of two algebraic kernels in vortex methods with a tree-code algorithm. SIAM J. Sci. Comput. 31(4), 2510–2527 (2009). doi:10.1137/080726872 MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Winckelmans, G.S., Leonard, A.: Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows. J. Comput. Phys. 109(2), 247–273 (1993). doi:10.1006/jcph.1993.1216 MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Benjamin W. Ong
    • 1
  • Andrew J. Christlieb
    • 2
  • Bryan D. Quaife
    • 3
  1. 1.Mathematical SciencesMichigan Technological UniversityHoughtonUSA
  2. 2.Department of MathematicsMichigan State UniversityEast LansingUSA
  3. 3.Department of Scientific ComputingFlorida State UniversityTallahasseeUSA

Personalised recommendations