Advertisement

Journal of Scientific Computing

, Volume 71, Issue 2, pp 615–633 | Cite as

Local Discontinuous Galerkin Method for Incompressible Miscible Displacement Problem in Porous Media

  • Hui Guo
  • Fan Yu
  • Yang YangEmail author
Article

Abstract

In this paper, we develop local discontinuous Galerkin method for the two-dimensional coupled system of incompressible miscible displacement problem. Optimal error estimates in \(L^{\infty }(0, T; L^{2})\) for concentration c, \(L^{2}(0, T; L^{2})\) for \(\nabla c\) and \(L^{\infty }(0, T; L^{2})\) for velocity \(\mathbf{u}\) are derived. The main techniques in the analysis include the treatment of the inter-element jump terms which arise from the discontinuous nature of the numerical method, the nonlinearity, and the coupling of the models. The main difficulty is how to treat the inter-element discontinuities of two independent solution variables (one from the flow equation and the other from the transport equation) at cell interfaces. Numerical experiments are shown to demonstrate the theoretical results.

Keywords

Incompressible miscible displacement problem Local discontinuous Galerkin method Error estimate 

Mathematics Subject Classification

65M15 65M60 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (11571367) and the Fundamental Research Funds for the Central Universities. The author would like to express sincere thanks to the referees for valuable comments and suggestions.

References

  1. 1.
    Amaziane, B., Ossmani, M.: Convergence analysis of an approximation to miscible fluid flows in porous media by combining mixed finite element and finite volume methods. Numer. Methods Partial Differ. Equ. 24, 799–832 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bartels, S., Jensen, M., Müller, R.: Discontinuous Galerkin finite element convergence for incompressible miscible displacement problem of low regularity. SIAM J. Numer. Anal. 47, 3720–3743 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bear, J.: Dynamics of fluids in porous media, p. 764. Dover Publications Inc, New York (1972)zbMATHGoogle Scholar
  5. 5.
    Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chainais-Hillairet, C., Krell, S., Mouton, A.: Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media. Numer. Methods Partial Differ. Equ. 31, 723–760 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ciarlet, P.: The Finite Element Method for Elliptic Problem. North-Holland publishing company, North Holland (1975)Google Scholar
  8. 8.
    Cockburn, B.: An introduction to the Discontinuous Galerkin method for convection-dominated problems, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, vol. 1697 of the series. Lecture Notes in Mathematics, pp 150–268 (2006)Google Scholar
  9. 9.
    Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cui, M.: Analysis of a semidiscrete discontinuous Galerkin scheme for compressible miscible displacement problem. J. Comput. Appl. Math. 214, 617–636 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, R.A.I.R.O. Anal. Numér 17, 249–256 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Douglas Jr., J., Ewing, R.E., Wheeler, M.F.: The approximation of the pressure by a mixed method in the simulation of miscible displacement, R.A.I.R.O. Anal. Numér 17, 17–33 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dullien, F.: Porous Media Fluid Transport and Pore Structure. Academic Press Inc, New York (1979)Google Scholar
  14. 14.
    Ewing, R.E., Russell, T.F.: Efficient time-stepping methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 19, 1–67 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ewing, R.E., Russell, T.F., Wheeler, M.F.: Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Eng. 47, 73–92 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ewing, R.E., Wheeler, M.F.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17, 351–365 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Feng, X., Recent developments on modeling and analysis of flow of miscible fluids in porous media. In: Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment (South Hadley, MA, 2001), Contemp. Math. 295. AMS, Providence, RI, 2002, pp 219–240Google Scholar
  18. 18.
    Gelfand, I.M.: Some questions of analysis and differential equations. Am. Math. Soc. Trans. 26, 201–219 (1963)MathSciNetGoogle Scholar
  19. 19.
    Guo, H., Zhang, Q., Yang, Y.: A combined mixed finite element method and local discontinuous Galerkin method for miscible displacement problem in porous media. Sci. China Math. 57, 2301–2320 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hurd, A.E., Sattinger, D.H.: Questions of existence and uniqueness for hyperbolic equations with discontinuous coefficients. Trans. Am. Math. Soc. 132, 159–174 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Jaffre, J., Roberts, J.E.: Upstream weighting and mixed finite elements in the simulation of miscible displacements. ESAIM. Math. Modell. Numer. Anal. 19, 443–460 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kumar, S.: A mixed and discontinuous Galerkin finite volume element method for incompressible miscible displacement problems in porous media. Numer. Methods Partial Differ. Equ. 28, 1354–1381 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Li, X., Rui, H.: A MCC finite element approximation of incompressible miscible displacement in porous media. Comput. Math. Appl. 70, 750–764 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Rivière, B.: Discontinuous Galerkin finite element methods for solving the miscible displacement problem in porous media, Ph.D. Thesis, The University of Texas at Austin (2000)Google Scholar
  25. 25.
    Russell, T.F., Wheeler, M.F.: Finite element and finite difference methods for continuous flows in porous media. In: Ewing, R.E. (ed.) The Mathematics of Reservoir Simulation, Frontiers Applied Mathematics 1, pp. 35–106. SIAM, Philadelphia (1983)CrossRefGoogle Scholar
  26. 26.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Sun, S., Rivière, B., Wheeler, M.F.: A combined mixed finite element and discontinuous Galerkin method for miscible displacement problem in porous media, Recent Progress. In: Tony C. et al. (Eds.) Computational and Applied PDEs, Kluwer, Plenum Press, Dordrecht, New York, pp 323–351 (2002)Google Scholar
  28. 28.
    Sun, S., Wheeler, M.F.: Discontinuous Galerkin methods for coupled flow and reactive transport problems. Appl. Numer. Math. 52, 273–298 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, H., Liang, D., Ewing, R.E., Lyons, S.L., Qin, G.: An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian–Lagrangian localized adjoint method and mixed finite element methods. SIAM J. Sci. Comput. 22, 561–581 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wang, H., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems. SIAM J. Numer. Anal. 53, 206–227 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wang, H., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems. Appl. Math. Comput. 272, 237–258 (2016)MathSciNetGoogle Scholar
  32. 32.
    Wang, H., Wang, S., Zhang, Q., Shu, C.-W.: Local discontinuous Galerkin methods with implicit-explicit time marching for multi-dimensional convectiondiffusion problems. ESAIM: M2AN 50, 1083–1105 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Wei, Y.: Stabilized finite element methods for miscible displacement in porous media. ESAIM. Math. Modell. Numer. Anal. 28, 611–665 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wheeler, M.F., Darlow, B.L.: Interiori penalty Galerkin methods for miscible displacement problems in porous media. Computational Methods in Nonlinear Mechanics, North-Holland, Amsterdam, pp. 458–506 (1980)Google Scholar
  35. 35.
    Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–97 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the Kuramoto–Sivashinsky equations and the Ito-type coupled KdV equations. Comput. Methods Appl. Mech. Eng. 195, 3430–3447 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40, 769–791 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Yang, D.: Mixed methods with dynamic finite-element spaces for miscible displacement in porous media. J. Comput. Appl. Math. 30, 313–328 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Yang, Y., Shu, C.-W.: Analysis of optimal superconvergence of local discontinuous Galerkin method for one-dimensional linear parabolic equations. J. Comput. Math. 33, 323–340 (2015)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Yuan, Y.: Characteristic finite element methods for positive semidefinite problem of two phase miscible flow in three dimensions. Chin. Sci. Bull. 22, 2027–2032 (1996)Google Scholar
  41. 41.
    Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates to the third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48, 1038–1063 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of ScienceChina University of PetroleumQingdaoChina
  2. 2.Michigan Technological UniversityHoughtonUSA

Personalised recommendations