Advertisement

Journal of Scientific Computing

, Volume 71, Issue 1, pp 414–434 | Cite as

A High Order Multi-Dimensional Characteristic Tracing Strategy for the Vlasov–Poisson System

  • Jing-Mei QiuEmail author
  • Giovanni Russo
Article

Abstract

In this paper, we consider a finite difference grid-based semi-Lagrangian approach for solving the Vlasov–Poisson (VP) system. Many of existing methods are based on dimensional splitting, which decouples the problem into solving linear advection problems, see Cheng and Knorr (J Comput Phys 22:330–351, 1976). However, such splitting is subject to the splitting error. If we consider multi-dimensional problems without splitting, difficulty arises in tracing characteristics with high order accuracy. Specifically, the evolution of characteristics is subject to the electric field which is determined globally from the distribution of particle density via Poisson’s equation. In this paper, we propose a novel strategy of tracing characteristics high order in time via a two-stage multi-derivative prediction–correction approach and by using moment equations of the VP system. With the foot of characteristics being accurately located, we propose to use weighted essentially non-oscillatory interpolation to recover function values between grid points, therefore to update the solution at the next time level. The proposed method does not have time step restriction as the Eulerian approach and enjoys high order spatial and temporal accuracy. The performance of the proposed schemes are numerically demonstrated via classical test problems such as Landau damping and two stream instabilities.

Keywords

Semi-Lagrangian Vlasov–Poisson system Characteristics High order WENO 

References

  1. 1.
    Banks, J., Hittinger, J.: A new class of nonlinear finite-volume methods for Vlasov simulation. IEEE Trans. Plasma Sci. 38, 2198–2207 (2010)CrossRefGoogle Scholar
  2. 2.
    Begue, M., Ghizzo, A., Bertrand, P., Sonnendrucker, E., Coulaud, O.: Two-dimensional semi-Lagrangian Vlasov simulations of laser-plasma interaction in the relativistic regime. J. Plasma Phys. 62, 367–388 (1999)CrossRefGoogle Scholar
  3. 3.
    Besse, N., Sonnendrucker, E.: Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space. J. Comput. Phys. 191, 341–376 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boyd, J.: Chebyshev and Fourier Spectral Methods. Courier Dover Publications, New York (2001)zbMATHGoogle Scholar
  5. 5.
    Carrillo, J.A., Vecil, F.: Nonoscillatory interpolation methods applied to Vlasov-based models. SIAM J. Sci. Comput. 29, 1179 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Casas, F., Crouseilles, N., Faou, E., Mehrenberger, M.: High-order hamiltonian splitting for Vlasov–Poisson equations. arXiv preprint arXiv:1510.01841, (2015)
  7. 7.
    Charles, F., Després, B., Mehrenberger, M.: Enhanced convergence estimates for semi-Lagrangian schemes application to the Vlasov-Poisson equation. SIAM J. Numer. Anal. 51, 840–863 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cheng, C., Knorr, G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22, 330–351 (1976)CrossRefGoogle Scholar
  9. 9.
    Cheng, Y., Christlieb, A.J., Zhong, X.: Energy-conserving discontinuous galerkin methods for the vlasov-ampère system. J. Comput. Phys. 256, 630–655 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cheng, Y., Gamba, I.M., Proft, J.: Positivity-preserving discontinuous galerkin schemes for linear Vlasov-Boltzmann transport equations. Math. Comput. 81, 153 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Christlieb, A., Guo, W., Morton, M.M., Qiu, J.-M.: A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations. J. Comput. Phys. 267C, 7–27 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Christlieb, A.J., Hitchon, W.N.G., Keiter, E.R.: A computational investigation of the effects of varying discharge geometry for an inductively coupled plasma. IEEE Trans. Plasma Sci. 28, 2214–2231 (2000)CrossRefGoogle Scholar
  13. 13.
    Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E.: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Springer, New York (1998)CrossRefzbMATHGoogle Scholar
  14. 14.
    Colella, P., Woodward, P.: The piecewise parabolic method(PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984)CrossRefzbMATHGoogle Scholar
  15. 15.
    Crouseilles, N., Latu, G., Sonnendrucker, E.: Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation. Int. J. Appl. Math. Comput. Sci. 17, 335–349 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Crouseilles, N., Mehrenberger, M., Sonnendrücker, E.: Conservative semi-lagrangian schemes for Vlasov equations. J. Comput. Phys. 229, 1927–1953 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dumbser, M., Käser, M., Titarev, V.A., Toro, E.F.: Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J. Comput. Phys. 226, 204–243 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Feng, J., Hitchon, W.: Self-consistent kinetic simulation of plasmas. Phys. Rev. E 61, 3160 (2000)CrossRefGoogle Scholar
  19. 19.
    Filbet, F., Sonnendrücker, E.: Comparison of Eulerian Vlasov solvers. Comput. Phys. Commun. 150, 247–266 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fried, B., Conte, S.: The Plasma Dispersion Function, vol. 1. Academic Press, New York (1961)Google Scholar
  22. 22.
    Friedman, A., Parker, S., Ray, S., Birdsall, C.: Multi-scale particle-in-cell plasma simulation. J. Comput. Phys. 96, 54–70 (1991)CrossRefGoogle Scholar
  23. 23.
    Güçlü, Y., Christlieb, A.J., Hitchon, W.N.: Arbitrarily high order convected scheme solution of the Vlasov-Poisson system. J. Comput. Phys. 270, 711–752 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Guo, W., Qiu, J.-M.: Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation. J. Comput. Phys. 234, 108–132 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Heath, R., Gamba, I.M., Morrison, P.J., Michler, C.: A discontinuous Galerkin method for the Vlasov-Poisson system. J. Comput. Phys. 231, 1140–1174 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Heikkinen, J., Janhunen, S., Kiviniemi, T., Ogando, F.: Full f gyrokinetic method for particle simulation of tokamak transport. J. Comput. Phys. 227, 5582–5609 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Huot, F., Ghizzo, A., Bertrand, P., Sonnendrucker, E., Coulaud, O.: Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov-Maxwell system. J. Comput. Phys. 185, 512–531 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Jacobs, G., Hesthaven, J.: Implicit-explicit time integration of a high-order particle-in-cell method with hyperbolic divergence cleaning. Comput. Phys. Commun. 180, 1760–1767 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Liu, Y., Zhang, Y.-T.: A robust reconstruction for unstructured weno schemes. J. Sci. Comput. 54, 603–621 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Qiu, J.-M., Christlieb, A.: A conservative high order semi-Lagrangian WENO method for the Vlasov Equation. J. Comput. Phys. 229, 1130–1149 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Qiu, J.-M., Shu, C.-W.: Conservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation. Commu. Comput. Phys. 10, 979–1000 (2011a)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Qiu, J.-M., Shu, C.-W.: Positivity preserving semi-Lagrangian discontinuous Galerkin methods for Vlasov simulations. J. Comput. Phys. 230, 8386–8409 (2011b)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Rossmanith, J., Seal, D.: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations. J. Comput. Phys. 230, 6203–6232 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Sonnendruecker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149, 201–220 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Xiong, T., Russo, G., Qiu, J.-M.: Conservative multi-dimensional semi-lagrangian finite difference scheme: stability and applications to the kinetic and fluid simulations. arXiv preprint arXiv:1607.07409, (2016)
  36. 36.
    Yabe, T., Xiao, F., Utsumi, T.: The constrained interpolation profile method for multiphase analysis. J. Comput. Phys. 169, 556–593 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zhou, T., Guo, Y., Shu, C.-W.: Numerical study on Landau damping. Phys. D 157, 322–333 (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of HoustonHoustonUSA
  2. 2.Department of Mathematics and InformaticsUniversity of CataniaCataniaItaly

Personalised recommendations